图文讲解HarmonyOS应用发布流程

HarmonyOS应用的开发和发布过程可以分为以下几个步骤:证书生成、应用开发、应用签名和发布。

1. 证书生成:

在开始开发HarmonyOS应用之前,首先需要生成一个开发者证书。开发者证书用于标识应用的开发者身份并确保应用的安全性。可以通过HarmonyOS开发者联盟的官方网站申请证书。申请成功后,会得到一个开发者证书文件。

密钥:包含非对称加密中的公钥和私钥,存储在密钥库文件中,格式为.p12,公钥和私钥对用于数字签名和验证;
证书请求文件:格式为.csr,全称为Certificate Signing
Request:包含密钥对中的公钥和公共名称、组织名称、组织单位等信息,用于向AppGallery Connect申请数字证书;
数字证书:.cer文件,由华为AppGallery Connect颁发;
Profile文件:格式为.p7b,包含Harmony应用/服务的包名、数字证书信息、描述应用/服务允许申请的证书权限列表,以及允许应用/服务调试的设备列表(如果应用/服务类型为Release类型,则设备列表为空)等内容,每个应用/服务包中均必须包含一个Profile文件;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
profile文件生成:
在这里插入图片描述

2. 应用开发:

在获得开发者证书后,可以开始进行HarmonyOS应用的开发工作。可以使用HarmonyOS Studio开发IDE来进行应用开发。HarmonyOS Studio是一款基于IntelliJ IDEA的IDE,提供了丰富的开发工具和功能,方便开发人员进行应用的设计、编码和调试。
在这里插入图片描述
在这里插入图片描述

3. 应用签名:

在应用开发完成后,需要对应用进行签名。应用签名是为了验证应用的完整性和真实性,并且在应用发布过程中需要进行验签操作。使用开发者证书对应用进行签名可以确保应用在发布和安装过程中的安全性。可以使用HarmonyOS Studio的签名工具或者命令行工具对应用进行签名操作。
在这里插入图片描述
在这里插入图片描述
签名配置会被写在build-profile.json5文件内:
在这里插入图片描述

4. 应用发布:

在应用开发和签名完成后,可以开始将应用发布到应用商店或者其他分发平台。可以选择将应用上传到HarmonyOS开发者联盟的官方应用商店,也可以选择其他第三方应用商店或者自己的私有分发平台。在应用发布时需要提供应用的必要信息,如应用名称、版本号、图标、描述等,并且需要上传应用的安装包文件。
在这里插入图片描述
build出.app文件后,在华为AppGallery Connect创建发布:
在这里插入图片描述
在这里插入图片描述
.app文件在软件包管理上传:
在这里插入图片描述

后面按照发布提示,缺什么补什么就行了。

### HarmonyOS 应用开发者高级认证中的相似度计算 HarmonyOS华为推出的一款分布式操作系统,旨在为多种设备提供统一的操作平台。在 HarmonyOS 高级认证的编程考试中,可能会涉及多模态数据处理以及跨模态相似度计算的内容。以下是关于如何实现相似度计算的具体方法。 #### 跨模态相似度计算的核心概念 跨模态相似度计算通常用于比较不同形式的数据(如图像和文本),并衡量它们之间的关联程度。这一过程依赖于预训练模型的支持,例如 OpenAI 提供的 CLIP 模型[^1]。CLIP 模型能够将输入的图像和文本映射到同一向量空间中,从而允许我们通过余弦距离或其他相似度指标来评估两者的匹配程度。 #### 利用 CLIP 实现图文相似度计算 下面是一个简单的 Python 代码示例,展示如何使用 CLIP 来计算图片与文字描述之间的相似度: ```python import torch from clip import load, tokenize # 加载预训练的 CLIP 模型及其对应的 tokenizer model, preprocess = load("ViT-B/32", device="cpu") def calculate_similarity(image_path, text_description): # 图像预处理 image = preprocess(Image.open(image_path)).unsqueeze(0).to("cpu") # 文本编码 tokens = tokenize([text_description]).to("cpu") with torch.no_grad(): # 获取特征向量 image_features = model.encode_image(image) text_features = model.encode_text(tokens) # 计算余弦相似度 similarity = (image_features @ text_features.T)[0].item() return similarity # 测试函数 similarity_score = calculate_similarity("example.jpg", "A dog playing with a ball.") print(f"Similarity Score: {similarity_score}") ``` 上述代码展示了如何加载 CLIP 模型并对给定的一张图片和一段文字描述进行相似度评分。该分数越高,则说明两者越接近。 #### 推荐系统的相似度计算扩展 除了跨模态场景外,在推荐系统领域也经常需要用到相似度计算。比如基于用户的协同过滤算法会根据用户行为记录构建偏好矩阵,并据此寻找具有相同兴趣爱好的其他用户群体[^2]。这种情况下可以采用皮尔逊相关系数或欧几里得距离作为评价标准之一。 对于更复杂的业务需求来说,还可以引入深度学习网络来自定义特征提取器,进而提升最终效果表现水平[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值