使用scipy实现最小二乘法,以及通过曲线对数据进行拟合(Python)

本文介绍了如何利用Python的SciPy库进行最小二乘法拟合,通过具体步骤展示了如何根据数据生成高阶曲线,并利用matplotlib绘制拟合曲线,适合于数据科学与工程中的数值计算和曲线拟合场景。
摘要由CSDN通过智能技术生成

SciPy函数库在NumPy库的基础上增加了众多的数学、科学以及工程计算中常用的库函数。例如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等等。提供了基于数组是算法级应用 矩阵运算,线性代数 最优化方法,聚类 空间运算,快速傅里叶变换。

import  scipy as sp
data = sp.genfromtxt('data/web_traffic.tsv',delimiter="\t")
# print(data.shape)# 读取数组长度
x= data[:,0]#训练数据集
y= data[:,1] #输出数据
sp.sum(sp.isnan(y))# 显示无效值
x = x[~sp.isnan(y)] # 对数组取反 只选择合法项
y = y[~sp.isnan(y)]


最小二乘法函数
def error(f, x, y):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值