矩阵代数(七)- 维数与秩

本文介绍了矩阵代数中的关键概念,包括子空间的维数、秩及其与可逆矩阵的关系。通过具体例题展示了如何确定矩阵的秩,并解释了秩定理和基定理,阐述了维数在描述子空间性质中的作用。同时,探讨了当矩阵的秩等于其列数时,矩阵可逆的条件。
摘要由CSDN通过智能技术生成

小结

  1. 坐标系
  2. 子空间的维数
  3. 秩与可逆矩阵定理

坐标系

选择子空间 H \boldsymbol{H} H的一个基代替一个存粹生成集的主要原因是, H \boldsymbol{H} H中的每个向量可以被表示为基向量的线性组合的唯一表示。

假设 β = { b 1 , ⋯   , b p } \boldsymbol{\beta}=\{ \boldsymbol{b_1},\cdots,\boldsymbol{b_p}\} β={ b1,,bp}是子空间 H \boldsymbol{H} H的一组基,对 H \boldsymbol{H} H中的每一个向量 x \boldsymbol{x} x,相对于基 β \boldsymbol{\beta} β的坐标是使 x = c 1 b 1 + ⋯ + c p b p \boldsymbol{x}=c_1\boldsymbol{b_1} + \cdots + c_p\boldsymbol{b_p} x=c1b1++cpbp成立的权 c 1 , ⋯   , c p c_1,\cdots,c_p c1,,cp,且 R p \mathbb{R}^{p} Rp中的向量 [ x ] β = [ c 1 ⋮ v p ] \boldsymbol{[x]_\beta}=\begin{bmatrix}c_1 \\ \vdots \\ v_p \end{bmatrix} [x]β=c1vp称为 x \boldsymbol{x} x(相对于 β \boldsymbol{\beta} β)的坐标向量,或 x \boldsymbol{x} x β \boldsymbol{\beta} β-坐标向量

v 1 = [ 3 6 2 ] , v 2 = [ − 1 0 1 ] , x = [ 3 12 7 ] , β = { v 1 , v 2 } \boldsymbol{v_1}=\begin{bmatrix}3 \\ 6 \\ 2\end{bmatrix},\boldsymbol{v_2}=\begin{bmatrix}-1 \\ 0 \\ 1\end{bmatrix},\boldsymbol{x}=\begin{bmatrix}3 \\ 12 \\ 7\end{bmatrix},\boldsymbol{\beta}=\{\boldsymbol{v_1}, \boldsymbol{v_2}\} v1=362,v2=101

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值