小结
- 经济学中的齐次线性方程组
- 配平化学方程式
经济学中的齐次线性方程组
假设一个国家的经济体系可以划分为许多部门,如各种制造、交通、娱乐和服务业。假设我们知道每个部门的年度总产出,并精确知道该总产出是如何在其他经济部门进行分配或“交易”的。称一个部门产出的总货币价值为产出的价格。列昂惕夫证明了下面的结论:
存在能够指派给各个部门总产出的平衡价格,使得每个部门的总收入恰好等于它的总支出。
假设一个经济体系由煤炭、电力(电源)和钢铁三个部门组成,各部门之间的分配如下表所示,其中每一列中的数表示该部门总产出所占的比例。
如表的第二列,将电力的总产出分配如下:40%给煤炭部门,50%给钢铁部门,剩下10%分配给电力部门。
用符号 P C P_C PC, P E P_E PE, P S P_S PS分别表示煤炭、电力和钢铁部门年度总产出的价格(即货币价值)。如果可能,求出平衡价格使每个部门的收支平衡。
解:某一部门所在的一列表示它的产出的去向,它所在的一行表示它从哪些部门获得了投入。因此可得出线性方程组:
{ P C = 0.4 P E + 0.6 P S P E = 0.6 P C + 0.1 P E + 0.2 P S P S = 0.4 P C + 0.5 P E + 0.2 p S \begin{cases}P_C = 0.4P_E + 0.6P_S \\P_E = 0.6P_C + 0.1P_E + 0.2P_S\\P_S = 0.4P_C + 0.5P_E + 0.2p_S\end{cases} ⎩⎪⎨⎪⎧PC=0.4PE+0.6PSPE=0.6PC+0.1PE+0.2PSPS=0.4PC+0.5PE+0.2pS~ { P C − 0.4 P E − 0.6 P S = 0 − 0.6 P C + 0.9 P E − 0.2 P S = 0 − 0.4 P C − 0.5 P E + 0.8 p S = 0 \begin{cases}P_C - 0.4P_E - 0.6P_S = 0 \\ - 0.6P_C + 0.9P_E - 0.2P_S = 0 \\ - 0.4P_C - 0.5P_E + 0.8p_S = 0\end{cases} ⎩⎪⎨⎪⎧PC−0.4PE−0.6PS=0−0.6PC+0.9PE−0.2PS=0−0.4PC−0.5PE+0.8pS=0
接下来进行行化简。为简明起见,数值舍入到小数点后两位。
[ 1 − 0.4 − 0.6 0 − 0.6 0.9 − 0.2 0 − 0.4 − 0.5 0.8 0 ] \begin{bmatrix} 1 & -0.4 & -0.6 & 0 \\ -0.6 & 0.9 & -0.2 & 0 \\ -0.4 & -0.5 & 0.8 & 0 \end{bmatrix} ⎣⎡1−0.6−0.4−0.40.9−0.5−0.6−0.20.8000⎦⎤~ [ 1 − 0.4 − 0.6 0 0 0.66 − 0.56 0 0 − 0.66 0.56 0 ] \begin{bmatrix} 1 & -0.4 & -0.6 & 0 \\ 0 & 0.66 & -0.56 & 0 \\ 0 & -0.66 & 0.56 & 0 \end{bmatrix} ⎣⎡100−0.40.66−0.66−0.6−0.560.56000⎦⎤~ [ 1 − 0.4 − 0.6 0 0 0.66 − 0.56 0 0 0 0 0 ] \begin{bmatrix} 1 & -0.4 & -0.6 & 0 \\ 0 & 0.66 & -0.56 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} ⎣⎡100−0.4