线性方程组(六)- 线性方程组的应用

本文介绍了线性方程组在经济学中的应用,通过实例展示了如何利用线性方程组平衡部门产出。同时,探讨了线性方程组在配平化学方程式中的作用,提供了一种系统的方法来确定化学反应的系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小结

  1. 经济学中的齐次线性方程组
  2. 配平化学方程式

经济学中的齐次线性方程组

假设一个国家的经济体系可以划分为许多部门,如各种制造、交通、娱乐和服务业。假设我们知道每个部门的年度总产出,并精确知道该总产出是如何在其他经济部门进行分配或“交易”的。称一个部门产出的总货币价值为产出的价格。列昂惕夫证明了下面的结论:
存在能够指派给各个部门总产出的平衡价格,使得每个部门的总收入恰好等于它的总支出。

假设一个经济体系由煤炭、电力(电源)和钢铁三个部门组成,各部门之间的分配如下表所示,其中每一列中的数表示该部门总产出所占的比例。
在这里插入图片描述
如表的第二列,将电力的总产出分配如下:40%给煤炭部门,50%给钢铁部门,剩下10%分配给电力部门。
用符号 P C P_C PC P E P_E PE P S P_S PS分别表示煤炭、电力和钢铁部门年度总产出的价格(即货币价值)。如果可能,求出平衡价格使每个部门的收支平衡。
解:某一部门所在的一列表示它的产出的去向,它所在的一行表示它从哪些部门获得了投入。因此可得出线性方程组:
{ P C = 0.4 P E + 0.6 P S P E = 0.6 P C + 0.1 P E + 0.2 P S P S = 0.4 P C + 0.5 P E + 0.2 p S \begin{cases}P_C = 0.4P_E + 0.6P_S \\P_E = 0.6P_C + 0.1P_E + 0.2P_S\\P_S = 0.4P_C + 0.5P_E + 0.2p_S\end{cases} PC=0.4PE+0.6PSPE=0.6PC+0.1PE+0.2PSPS=0.4PC+0.5PE+0.2pS { P C − 0.4 P E − 0.6 P S = 0 − 0.6 P C + 0.9 P E − 0.2 P S = 0 − 0.4 P C − 0.5 P E + 0.8 p S = 0 \begin{cases}P_C - 0.4P_E - 0.6P_S = 0 \\ - 0.6P_C + 0.9P_E - 0.2P_S = 0 \\ - 0.4P_C - 0.5P_E + 0.8p_S = 0\end{cases} PC0.4PE0.6PS=00.6PC+0.9PE0.2PS=00.4PC0.5PE+0.8pS=0
接下来进行行化简。为简明起见,数值舍入到小数点后两位。
[ 1 − 0.4 − 0.6 0 − 0.6 0.9 − 0.2 0 − 0.4 − 0.5 0.8 0 ] \begin{bmatrix} 1 & -0.4 & -0.6 & 0 \\ -0.6 & 0.9 & -0.2 & 0 \\ -0.4 & -0.5 & 0.8 & 0 \end{bmatrix} 10.60.40.40.90.50.60.20.8000 [ 1 − 0.4 − 0.6 0 0 0.66 − 0.56 0 0 − 0.66 0.56 0 ] \begin{bmatrix} 1 & -0.4 & -0.6 & 0 \\ 0 & 0.66 & -0.56 & 0 \\ 0 & -0.66 & 0.56 & 0 \end{bmatrix} 1000.40.660.660.60.560.56000 [ 1 − 0.4 − 0.6 0 0 0.66 − 0.56 0 0 0 0 0 ] \begin{bmatrix} 1 & -0.4 & -0.6 & 0 \\ 0 & 0.66 & -0.56 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} 1000.4

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值