sklearn中网格搜索和交叉验证

什么是网格搜索(Grid Search)

Sklearn中寻找最佳的超参数的组合的过程称为网格搜索。
当然我们可以自己写代码寻找最佳超参数,但效率较慢。Sklearn中已经提供了现成的方法供我们使用。

网格搜索的API

sklearn.model_selection.GridSearchCV(estimator, param_grid=None, cv=None)

参数:

  • estimator:估计器对象
  • param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
  • cv:指定几折交叉验证

方法:

  • fit:输入训练数据
  • score:准确率,是一次性结果

结果分析:

  • best_score_:在交叉验证中验证的最好准确率,是N次交叉验证后得到的平均分
  • best_estimator_:最好的参数模型
  • cv_results_:每次交叉验证后的验证集准确率结果和训练集准确率结果

交叉验证

上面API中还有一个CV参数,就是表示交叉验证。
交叉验证是将训练集数据分为N份,其中一份为验证集。每次更换不用的验证集,对数据进行N次测试,得到N次结果,最后对结果取平均值作为最终结果。以上被称为N折交叉验证。
在这里插入图片描述
交叉验证可以让模型更加准确可信。

代码示例

from sklearn import datasets
from sklearn.preprocessing import Sta
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC人工智残

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值