1、Spark SQL是什么
Spark SQL是Spark中用于处理结构化数据的一个模块,前身是Shark,但本身继承了前身Hive兼容和内存列存储的一些优点。Spark SQL具有以下四个特点:
- 综合性(Integrated):Spark中可以加入SQL查询,也可以使用DataFrame API,其中API提供了多种语言选择,Python、R、Java和Scala都支持。
- 连接统一性(Uniform Data Access):使用相同的方式连接不同的数据源(Hive、Json和JDBC等等)。
- Hive兼容性:能够在已有数据仓库中执行SQL或者Hive查询
- 标准化连接(Standard Connectivity):提供了JDBC或者ODBC的数据接口,可以给其他BI工具使用。
Spark SQL的优点
- 代码量少:可以直接写SQL语句或者DataFrame 。
- 性能更高:在使用DataFrame API时,DataFrame转成RDD时,会进行代码优化,执行效率更高;Spark SQL代码的RDD还行效率比Python、Java等编写的RDD效率高。
2、DataFrame简介
Spark中DataFrame是⼀个分布式的⾏集合,可以想象为⼀个关系型数据库的表,或者⼀个带有列名的Excel表格。不过它跟RDD有以下共同之处:
- 不可变(Immuatable):跟RDD一样,一旦创建就不能更改你,只能通过transformation生成新的DataFrame;
- 懒加载(Lazy Evaluations):只有action才会让transformation执行;
- 分布式(Distributed):也是分布式的。
DataFrame跟RDD的比较
DataFrame | RDD | |
---|---|---|
逻辑框架 | 提供详细结构信息,例如列的名称和类型 | 不知道类的内部结构 |
数据操作 | API更丰富、效率更高 | 代码少时,速度更快 |
DataFrame API常用代码
DataFrame的API也分为transformation和action两类
- transformation 延迟操作
- action 立即操作
- 创建SparkSession对象
SparkSession.builder.master("local") \
... appName("Word Count") \
... getOrCreate()
# Builder 是 SparkSession 的构造器。 通过 Builder, 可以添加各种配置
# master (master)设置要链接到的spark master节点地址, 传⼊ “local” 代表本地模式, “local[4]”代表本地模式4内核运⾏
# appName (name)为Spark应⽤设置名字
# getOrCreate ()获取⼀个已经存在的 SparkSession 或者如果没有已经存在的, 创建⼀个新的SparkSession
- 通过SparkSession创建DataFrame
sparkSession.createDataFrame
- 读取文件生成DataFrame
# json格式
spark.read.json("xxx.json")
spark.read.format('json').load('xxx.json')
# parquet格式
spark.read.parquet("xxx.parquet")
# jdbc格式
spark.read.format("jdbc").option("url","jdbc:mysql://localhost:3306/db_name")\
.option("dbtable","table_name").option("user","xxx").option("password","xxx").load()
- 基于RDD创建DataFrame
# rdd中读取数据
spark = SparkSession.builder.master('local').appName('Test'