1 推荐系统的发展
推荐系统是指面对没有需求的用户在进入产品时,要给用户推荐什么东西,现在的APP基本上都会采用推荐系统。
从一开始的1990s开始的门户网站,像Yahoo、搜狐和Hao123等等,都是基于分类目录的网页导航网站,将各个网页聚合在一个网页中,方便用户跳转访问;到了2000s开始,进入搜索引擎,例如百度、google和必应,用户通过有目的的搜索,找到自己的需求网站;而进入2010s开始,进入推荐系统,不需要用户提供明确需求,通过分析用户的历史行为,主动给用户推荐他们感兴趣的东西,典型的APP有:快手、抖音和B站等等,基本上现在的APP都是基于推荐系统。
2 推荐系统的工作原理
推荐系统是基于以下四种推荐来进行的:
- 社会化推荐 让用户的社会关系进行推荐,例如好友推荐,例如分享功能;
- 基于内容推荐 根据用户的搜索的东西,了解用户的兴趣;
- 基于热点推荐 向用户推荐当前的热点资讯;
- 基于协同过滤推荐 向同一类用户推荐东西,拓展用户的边界。
综合应用以上四种推荐,可以高效链接用户和商品,提高用户的活跃度和停留时间,从而提高产品的商业价值。目前最成功的的APP当属抖音。
3 推荐系统的总体架构
如上图所示,其中用户服务主要是前端界面,数据采集会采用Lambda架构,推荐算法包含召回和排序两个方面。
其中推荐系统的数据采集架构Lambda架构图如下: