数论.快速幂

公式求幂→二分求幂→快速求幂→快速求幂取模 

公式求幂

         直接使用C语言的库函数pow(),pow()函数在math头文件里

当然用公式求解,似乎很简单,但是它的时间复杂度较高,为O(n),对于数据较大的问题,十分容易超时

二分求幂

二分幂的时间复杂度相较于第一种有了明显的优化,达到了O(lgn)

二分求幂的原理可以用下面这张图表示 

 

用递归来实现:

int pow(int a,int n)//返回值是a的n次方

{

    if(n==0)//递归终止条件

        return 1;

    if(n==1)

        return a;

    int result=pow(a,n/2);//二分递归

    result=result*result;//这部分奇数偶数都一样

    if(n%2==1)//如果n是奇数,就要多乘一次

        result=result*a;

    return result;

}

 

用非递归来实现:

int pow(int a,int n)//返回值是a的n次方

{

    int result=1;

    while(n!=0)

    {

        if(n%2==1)//如果n是奇数

            result=result*a;//就要多乘一次

        a=a*a;

        n=n/2;//二分

    }

    return result;

}

 

快速幂

    快速幂是一种利用b的二进制特征来快速求a^b的算法,借助了强大的位运算,时间复杂度进一步优化,达到O(logN)

例如:求a11次方 
11的二进制是1011 
11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 

 

用非递归的代码实现

int pow(int a,int n)//返回值是an次方

{

    int result=1,flag=a;

    while(n!=0)

    {

        if(n&1)//如果n是奇数,即n的二进制最末位为1

            result=result*flag;

        flag=flag*flag;

        n=n>>1;//n的二进制右移一位,即n/2

    }

    return result;

}

 

 

快速求幂取模

刷题中让直接求幂的不多,求幂后取模的却不少,毕竟求幂结果太大了。 
水平所限,只会用二分幂取模,时间复杂度与二分幂一样O(lgn) 
基本可以在各种比赛中顺利通过,也是目前比较常用的方法

原理同样很简单,都是小学学过的:积的取余等于取余的积取余 (涉及到同余定理)
接下来用代码实现

int pow(int a,int n,int b)//返回值是an次方对b取余后的值

{

    int result=1;

    a=a%b;//积的取余等于取余的积取余

    while(n>0)

    {

        if(n%2==1)

            result=result*a%b;//n是奇数的话就要多乘一次,原理和前面的二分求幂一样

        n=n/2;//二分

        a=a*a%b;//积的取余等于取余的积取余

    }

    return result;

影响计算机效率的是运算次数,而不是运算结果。 
所以前面几个算法都是通过增大运算结果,减少运算次数,提高计算机效率。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值