数论之————快速幂+矩阵快速幂

本文介绍了快速幂算法,解释了为何使用快速幂来高效计算大数次方,并提供了代码模板。接着,文章深入讨论了矩阵快速幂,阐述了矩阵乘法规则,并指出其通常与斐波那契数列问题结合使用。最后,提到了单位矩阵的概念及其性质,并给出了相关代码示例。
摘要由CSDN通过智能技术生成

快速幂,顾名思义快速求一个数的次方。
为什么要用快速幂呢?
因为一般方法会超时,当次方很大的时候。
皮一下23333
——————————————————————————————————————————————

正文开始

当n=2k,那么xn=((x2)2)…
只要做k次平方运算就好了,现将n表示为2的幂次的和
得到 n=2k1+2k2+2k3+…
所以 xn=x^ 2k1*x^ 2k2······ ——————理解为(x的2的k1次方)
在依次求x^ 2k的同时计算,最终得到了O(log n)的快速幂计算方法。
比如 x22=x16*x4*x2; (22的二进制为10110)得到了22是那些2的次方和得到的。

因为算的数一般都比较大,所以基本题目都要求有取余操作。
代码模板:
typedef long long LL;
LL mod_pow(LL x,LL n,int mod)
{
    LL res=1;
    while(n>0)
    {
        if(n&1) res=res*x%mod;      //如果二进制最低位是1,则乘上x^(2^i)
        x&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值