PKU-1077 Eight (八数码之A*算法)

原题链接 http://poj.org/problem?id=1077

Eight

Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it.  It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing.  Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

13 14 15  x 

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge.  As an example, the following sequence of moves solves a slightly scrambled puzzle:
 1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 

 5  6  7  8    5  6  7  8    5  6  7  8    5  6  7  8 

 9  x 10 12    9 10  x 12    9 10 11 12    9 10 11 12 

13 14 11 15   13 14 11 15   13 14  x 15   13 14 15  x 

           r->           d->           r-> 

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people.  In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.

Input

You will receive  a description of a configuration of the 8 puzzle.  The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'.  For example, this puzzle
 1  2  3 

 x  4  6 

 7  5  8 

is described by this list:
 1 2 3 x 4 6 7 5 8 

Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution.  The string should include no spaces and start at the beginning of the line.

Sample Input

 2  3  4  1  5  x  7  6  8 

Sample Output

ullddrurdllurdruldr

 

A*算法

一般地,节点n的评估函数f(n)可表示如下

        f(n) = h(n) + d(n)

  h(n) 是 启发式函数,与启发信息相关。启发函数h(n)的设计非常重要,它无固定的设计模式,主要取决于面向具体问题结构的知识和求解的技巧。d(n)是开始节点到节点n的深度信息。

  A*算法最为核心的部分,就在评估函数的设计。在A*搜索算法的评估函数中,d(n)表示从起始节点到当前节点的代价,通常用当前节点在搜索树中的深度表示。启发式函数h(n)表示当前节点到目标节点的评估值,是启发式搜索算法最为关键的部分。

  A*搜索算法的评估函数包括两个约束条件:

    (1) h(n)不大于节点n到目标节点t的实际最小代价h*(n),即:h(n) <= h*(n)。

    (2) 任意节点的评估值f必须不小于父节点的f值,即f单调递增(如果存在小于的情况,即子结点f值小于父结 点,则从父结点经过子结点再回到父结点,父结点f值会变小……搜索结果会形成一个循环)。

  满足这两个条件,可以证明A*能够获得问题的最优解。简单证明一下,选择节点x,节点x一定是可扩展节点中的具有最小估计值的节点,如果x是目标节点,则其估计值f(x)就是实际最小代价,不大于其他节点的估计值,又条件(1),所以f(x)不大于其它任意节点的实际最小代价,即为最优解。

一般地,A*搜索算法可以描述如下:
A* ( )
    open ← {s};
    closed ← Ø
    while open != Ø do
        remove leftmost state from open, call it x
        if x is a goal then return success
        else
            generate children of x
            for each child c do
                if c is already on open list then
                    if c was reached by a shorter path then
                        update f(c)
               else if c is already on closed list then
                    if c was reached by a shorter path then
                        remove c from closed list
                        add c to open list and update f(c)
               else
                    assign c a heuristic value f(c)
                    add c to open list
          put x on closed list and reorder states on open by f
    return failure

(注:伪代码中如果扩展结点在closed表中,会比较f值的大小,但是f本身是非递减,从起点开始扩展的点大于等于起点的f值,而后每次又从open去取f最小的值进行扩展,所以 closed中存储的都是当前状态f值最小的点,不会出现所谓的shorter path;等价于如果扩展结点在closed列表,直接continued)

A*算法与BFS:可以这样说,BFS是A*算法的一个特例。对于一个BFS算法,从当前节点扩展出来的每一个节点(如果没有被访问过的话)都要放进队列进行进一步扩展。也就是说BFS的估计函数h永远等于0,没有一点启发式的信息,可以认为BFS是“最烂的”A*算法。而A*搜索算法采用最小代价优先的策略,即在所有将扩展的节点中,选择具有最小代价的节点作为下一个扩展节点。其终止准则是如果选择的节点是目标节点,即停止A*搜索算法。A*()算法中open表是一个优先队列,保存即将要展开的节点。closed表是一个数据结构,例如数组或者链表,保存展开过的节点。s是开始节点。open表可用最小堆实现。(不能在加入open表之前判断是否是目标节点并返回,这样不能保证是由最优路径到达目标节点的)

Source Code

#include <iostream>
#include <queue>
using namespace std;

#define Max 365000   // 9! = 362880

struct node {
	int x, y;
	char state[10];
	int cantorValue;
	int f;
    
	friend bool operator<(node a,node b) {
		return a.f > b.f;
	}
};

char state[Max];  // 0:未查询 1:在open列表中 2:在closed列表中
int h[Max];   //估价函数,这里用曼哈顿距离
int depth[Max];   //深度
int parent[Max], opration[Max];
int index;
priority_queue<node> Q;
node Next, Top;
int dir[4][2] = { 1,0, -1,0, 0,1, 0,-1};

/*
康托展开:X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!
例:3 5 7 4 1 2 9 6 8 展开为 98884。因为X=2*8!+3*7!+4*6!+2*5!+0*4!+0*3!+2*2!+0*1!+0*0!=98884.
解释: 
排列的第一位是3,3以后的序列中比3小的数有2个1,2,以这样的数开始的排列有8!个,因此第一项为2*8!	
排列的第二位是5,5以后的序列中比5小的数有3个4、1、2,这样的排列有7!个,因此第二项为3*7!	  
…………
以此类推,直至0*0!
*/
int Cantor(char * buf, int len) {
     
	//bit记录之后的序列中比当前位小的值的个数
	int cantor[9] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320};
	int i, j, bit;
	int result = 0;

	for (i = 0; i < len; i ++) {
		bit = 0;
		for (j = i + 1; j < len; j++) {
			if (buf[i] > buf[j]) {
				bit ++;
			}
		}
		result += (bit * cantor[len - i - 1]);
	}
	return result;
}

bool isInside(int x, int y) {
	if (x < 0 || y < 0 || x > 2 || y > 2) {
		return false;
	}
	return true;
} 

//计算曼哈顿距离(只计算1~8,确保每次移动h(n)最多减少1,而g(n)会增加1,这样f = g + h为非递减序列)
int goal_state[9][2] = {{0,0}, {0,1}, {0,2}, {1,0}, {1,1}, {1,2}, {2,0}, {2,1}, {2,2}};
int manhattan(const char *board){ 
	int i, x, y, num;
	int dis = 0;
	for (i = 0; i < 9; i++) {
		x = i / 3;
		y = i % 3;
		num = board[i] - '0';
		if (num != 9) {
			dis += (abs(x - goal_state[num - 1][0]) + abs(y - goal_state[num - 1][1]));
		}		
	}
	return dis;
}

//输出路径
void print_opration() {
	int step[50];
	int len, cur, i;
	len = cur = 0;
	while (parent[cur] != -1) {
		step[len ++] = opration[cur];
		cur = parent[cur];
	}
	
	for (i = len - 1; i >= 0; i--) {
		switch (step[i]){
		case 0: 
			printf("d");
			break;
		case 1:
			printf("u");
			break;
		case 2:
			printf("r");
			break;
		case 3:
			printf("l");
			break;
		}
	}
	printf("\n");
}

bool A_star(node start) {

	int i, j, nextX, nextY;
	int a, b;
	char temp;

	while (!Q.empty()) {
		Q.pop();
	}

	Q.push(start);

	while (!Q.empty()) {
		Top = Q.top();
		Q.pop();	

		if (Top.cantorValue == 0) {
			print_opration();
			return true;
		}
		
		for (i = 0; i < 4; i++) {
			nextX = Top.x + dir[i][0];
			nextY = Top.y + dir[i][1];
			if (!isInside(nextX, nextY)) {
				continue;
			}
            
			Next.x = nextX;
			Next.y = nextY;
 			for (j = 0; j < 9; j ++) {
				Next.state[j] = Top.state[j];
			}
			a = Next.x * 3 + Next.y;
			b = Top.x * 3 + Top.y;
			temp = Next.state[a];
			Next.state[a] =  Next.state[b];
			Next.state[b] = temp;	
			Next.cantorValue = Cantor(Next.state, 9);
			if (state[Next.cantorValue] == 0) {                //不在open也在不closed中,插入open
				parent[Next.cantorValue] = Top.cantorValue;
				opration[Next.cantorValue] = i;
				h[Next.cantorValue] = manhattan(Next.state);
				depth[Next.cantorValue] = depth[Top.cantorValue] + 1;
				Next.f = depth[Next.cantorValue] + h[Next.cantorValue];
				Q.push(Next);

				state[Next.cantorValue] = 1;

			} 
			//在open列表中(说明h[]即曼哈顿距离肯定已经计算过),并且新的f值小于原先的f, 因为f = g + h,而h不变,所以只需要比较g的大小
			else if (state[Next.cantorValue] == 1 && (depth[Top.cantorValue] + 1 < depth[Next.cantorValue])) {   
				parent[Next.cantorValue] = Top.cantorValue;
				opration[Next.cantorValue] = i;
				depth[Next.cantorValue] = depth[Top.cantorValue] + 1;
				Next.f = depth[Next.cantorValue] + h[Next.cantorValue];
				Q.push(Next);                 //直接插入新值, 有冗余,但不会错
			}
			//在closed列表中,比较两个X的估价值,注意是同一个节点的两个不同路径的估价值
			else if (state[Next.cantorValue] == 2 && (depth[Top.cantorValue] + 1 < depth[Next.cantorValue])) {
			/*	parent[Next.cantorValue] = Top.cantorValue;
				opration[Next.cantorValue] = i;
				depth[Next.cantorValue] = depth[Top.cantorValue] + 1;
				Next.f = depth[Next.cantorValue] + h[Next.cantorValue];
				Q.push(Next);

				state[Next.cantorValue] = 1;
			*/
				continue;
			}

		}
		
		state[Top.cantorValue] = 2;
	}
	return false;
}

int main() {
	int i;
	char init[10];

	index = 0;
	memset(h, -1, sizeof(h));
	memset(state, 0, sizeof(state));
	node start;

	for (i = 0; i < 9; i++) {
		cin >> init[i];
		if (init[i] == 'x') {
			init[i] = '0' + 9;
			start.x = i / 3;
			start.y = i % 3;
		}
	}
	
	for (i = 0; i < 9; i++) {
		start.state[i] = init[i];
	}

	start.cantorValue = Cantor(init, 9);
    state[start.cantorValue] = 1;
	depth[start.cantorValue] = 0;
	h[start.cantorValue] = manhattan(start.state);
	start.f = h[start.cantorValue] + depth[start.cantorValue];
	parent[start.cantorValue] = -1;
	opration[start.cantorValue] = -1;
	if (!A_star(start)) {
		printf("unsolvable\n");
	}

	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值