Lecture 1

昨天的presentation告一段落之后,鉴于提问环节中遇到的问题,决定还是要好好学习下矩阵的算法。所以就拿出很久以前就注意到的MIT的线性代数的网上教程开始学习。这个数学老师还蛮有意思的,呵呵。

 

首先,先摘录下课程中自己觉得比较有收录意义的course note:

 

The fundamenetal problem of linear algebra, which is to solve a system of linear equation.

线性代数的基本问题,就是解线性方程。

 

Row Picture: That's the picutre of one equation at a time. It's the picture you've seen before in two by two equations where lines meet.

行图片:即每次一个等式的图片。就类似于之前熟悉的两条直线相交的两个等式。

 

row picture

 

 

column picture: a column at a time (把一列视为一个整体来看)

如下图:视为两个向量,x , y 未知,如何把左边的两个向量进行适当的线性结合,得到等式右边的向量

column picture

the linear combination of the columns is the most fundamental operation in the whole course.

 

如图可知,任意的(x, y)组合,可以表示平面中所有的点。

 

但是针对于三维空间的时候,三个向量是否就可以表示空间内所有的点呢?

答案是否定的。因为如果第三个向量可以用前面两个向量线性表示的话(即有一个向量不是线性独立的),说明三个向量是共面的,则不能表示空间中所有的点。

 

A: matrix   

Ax = b          A times x is a combination of the columns of A.

 

matrix calculation 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值