昨天的presentation告一段落之后,鉴于提问环节中遇到的问题,决定还是要好好学习下矩阵的算法。所以就拿出很久以前就注意到的MIT的线性代数的网上教程开始学习。这个数学老师还蛮有意思的,呵呵。
首先,先摘录下课程中自己觉得比较有收录意义的course note:
The fundamenetal problem of linear algebra, which is to solve a system of linear equation.
线性代数的基本问题,就是解线性方程。
Row Picture: That's the picutre of one equation at a time. It's the picture you've seen before in two by two equations where lines meet.
行图片:即每次一个等式的图片。就类似于之前熟悉的两条直线相交的两个等式。
column picture: a column at a time (把一列视为一个整体来看)
如下图:视为两个向量,x , y 未知,如何把左边的两个向量进行适当的线性结合,得到等式右边的向量
the linear combination of the columns is the most fundamental operation in the whole course.
如图可知,任意的(x, y)组合,可以表示平面中所有的点。
但是针对于三维空间的时候,三个向量是否就可以表示空间内所有的点呢?
答案是否定的。因为如果第三个向量可以用前面两个向量线性表示的话(即有一个向量不是线性独立的),说明三个向量是共面的,则不能表示空间中所有的点。
A: matrix
Ax = b A times x is a combination of the columns of A.