- 博客(15)
- 资源 (6)
- 收藏
- 关注
原创 学习笔记(01):Python+Vue+Django前后端分离项目实战-实现学生信息查询的后端接口...
本季课程把基础知识拆解到项目里,让你在项目情境里学知识。 这样的学习方式能让你保持兴趣、充满动力,时刻知道学的东西能用在哪、能怎么用。 平时不明白的知识点,放在项目里去理解就恍然大悟了。 一、融汇贯通 本视频采用了前后端分离的开发模式,前端使用Vue.js+Element UI实现了Web页面的呈现,后端使用Python 的Django框架...
2020-05-28 23:41:43 1256
原创 pyinstaller打包报错问题
最近写了一个excel处理程序,结合easyui 进行了GUI页面的变编程。但是使用pyiinstaller打包封装过程中出现了各种问题,这时候选择使用conda虚拟环境在进行封装,可以取得不错的效果:现在简介记录一下过程1、conda create -n your_env_name python=X.X(2.7、3.6等) anaconda 命令创建python版本为X.X、名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到。
2020-05-25 09:18:42 351
原创 scikit-learn中机器学习聚类方法实战
Clustering聚类导论聚类方法概述K-means聚类导论在scikit-learn 中 未标记的数据的 聚类(Clustering) 可以使用模块sklearn.cluster来实现。每个聚类算法(clustering algorithm)都有两个变体: 一个是 类(class), 它实现了 fit 方法来学习训练数据的簇(cluster),还有一个 函数(function),当给定训...
2019-12-25 15:26:57 651
原创 决策树的各类概述
LogisticRegression1.决策树的前世今生1.1 什么是决策树1.2 决策树的构建1.3 sklearn中使用决策树2. 决策树的特征选择2.1 信息论相关概念2.2 信息熵2.3 条件熵2.4 信息增益2.5 信息增益率2.5.1 信息增益率的意义2.6 基尼系数3. 决策树的算法3.1 ID3算法3.2 C4.5算法3.3 Cart分类回归树3.3.1 Cart分类树3.3.2 ...
2019-12-18 11:03:56 729
原创 神策分析中的数据模型
1. 数据模型简介在神策分析中,我们使用“事件模型(Event 模型)”来描述用户在产品上的各种行为,这也是神策分析所有的接口和功能设计的核心依据。简单来说,事件模型包括事件(Event)和用户(User)两个核心实体,在神策分析中,分别提供了接口供使用者上传和修改这两类相应的数据,在使用产品的各个功能时,这两类数据也可以分别或者贯通起来参与具体的分析和查询。对这两个概念,我们会在后文做具体的...
2019-12-12 10:49:16 1992
原创 机器学习逻辑回归算法
LogisticRegression逻辑回归概述逻辑回归的背后逻辑逻辑回归的使用python代码的实现决策边界多项式思路对非线性决策边界数据进行分类sklearn中的逻辑回归及正则化构建回归数据sklearn中的逻辑回归多项式逻辑回归尝试过拟合模型正则化L2正则L1正则总结逻辑回归概述逻辑回归是目前就广泛使用较多的一种算法,能够贴合的场景也比较多,主要是他提现了数据建模中很重要的思想:对问题划...
2019-12-12 10:26:04 353
原创 机器学习之梯度下降
机器学习之梯度下降梯度下降的目的梯度下降的思想梯度下降的场景假设梯度下降代码梯度下降总结梯度下降的目的梯度下降不是一个机器学习算法,而是一种基于搜索的最优化方法。梯度下降(Gradient Descent, GD)优化算法,其作用是用来对原始模型的损失函数进行优化,以便寻找到最优的参数,使得损失函数的值最小。要找到使损失函数最小化的参数,如果纯粹靠试错搜索,比如随机选择1000个值,依次作为某...
2019-12-02 09:24:48 221
原创 数据埋点之指标口径学习
指标口径学习指标口径学习的意义主流业务指标口径运营商的指标口径指标口径学习的意义在我们定义数据埋点的过程中,我们需要了解整个系统架构的结构数据流,也需要明确每一个进入数据库字段的数据,究竟意味着什么,作为数据产品经理,了解对应的术语、定义、俗语、能够快速的对我们整体数据库的架构产生一个明确的了解,从而才能够确定究竟在什么时间什么样的方式来进行数据的埋点采集主流业务指标口径以下指标口径均为个...
2019-11-29 17:12:03 1524
原创 线性回归与最小二乘法
简单线性回归&最小二乘法简单线性回归推导思路最小二乘法损失函数小结代码的实现一元线性回归多元线性回归简单线性回归而简单线性回归是属于回归(regression),即label为连续数值型(continuous numerical variable),如:房价、股票价格、降雨量等。所谓简单,是指只有一个样本特征,即只有一个自变量;所谓线性,是指方程是线性的;所谓回归,是指用方程来模拟变...
2019-11-29 16:39:04 1337
原创 机器学习特征工程与KNN详细探讨
机器学习特征工程1.什么是特征工程2.数据归一化2.1 最值归一化的实现2.2 均值方差归一化的实现2.3 Sklearn中的归一化3.KNN算法的优缺点探讨3.1KNN的主要优点:3.2 KNN的主要缺点3.3 KNN优化之KD树3.3.1 KD树的原理3.3.2 Sklearn中KDTree1.什么是特征工程特征在机器学习以及数据挖掘的过程中是最为重要的一个指标,在美团机器学习实践中曾探讨...
2019-11-21 10:15:10 950 1
原创 数据可视化学习的导论
数据可视化学习导论1.数据可视化学习的意义2.数据可视化的基本理念2.1数据的基本种类2.2 数据图标的聚焦性和可读性2.3 优化选择可视化图标1.数据可视化学习的意义在如今的大数据时代,海量的数据分析软件,数据分析工具层出不穷,在数据科学探索领域,人们不断的进行深入,而在整个数据科学或者说在机器学习的整个过程中,数据的可视化似乎看上去可有可无,但是这确实让人们进一步深入了解或者是浅层理解数据...
2019-11-20 20:29:44 667
原创 数据埋点的应用与探讨
数据埋点的应用与探讨1.数据埋点是什么?2.如何使用数据埋点?1.数据埋点是什么?一般的数据可分为两大类:流量数据,以用户访问产品,记录用户浏览行为核心的埋点数据日志;业务数据,以生产系统内存储的业务表单数据为核心的业务库数据记录;目前更多的数据挖掘是基于业务数据以及相关的业务知识为基础和前提的情况下对数据进行深入的分析和挖掘.而数据埋点则更多的是采集用户的行为数据,通过用户的行为...
2019-11-15 16:49:59 301
原创 机器学习分类与线性评价结果
KNN-machine leanring notes1.分类准确度够用吗?2.什么是混淆矩阵?3.究竟什么评价指标更合适?4.ROC曲线4.1分类阈值、TPR和FPR4.1.1分类阈值4.1.2 TPR4.1.3 FPR4.2 ROC曲线4.2.1 分析5 AUC6 分类精确度总结7 线性回归的评价指标8 线性回归代码评价的实现8.1 简单线性回归预测9 R Square介绍10 简单线性回归总结...
2019-11-13 15:59:33 433
原创 机器学习KNN算法(二)
KNN-machine leanring notes1.数据预处理2.分类精准度3.超参数3.1 超参数简介3.2超参数一-对于KNN来说寻找最好的K3.3 超参数二-权重3.4超参数网格搜索总结1.数据预处理通常情况下我们的数据集都是按照一定规律导出,这时我们需要通过一定的方法都数据集进行打乱,这样才能更好的符合随机抽样的过程# 方法1# 使用concatenate函数进行拼接,因为传入的...
2019-11-13 15:23:07 411
原创 机器学习KNN算法使用指南
KNN-machine leanring notesKNN 算法简介KNN 算法流程KNN实现过程Sklearn总结KNN 算法简介kNN(k-NearestNeighbor),也就是k最近邻算法。顾名思义,所谓K最近邻,就是k个最近的邻居的意思。也就是在数据集中,认为每个样本可以用离他最距离近的k个邻居来代表。–百度该算法就是用来找数据点在该纬度的数据空间中,离哪一些点的样本更接近,通过相...
2019-11-05 16:27:04 1532
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人