机器学习
文章平均质量分 89
Colin1996
数据分析 数据科学爱好者
展开
-
scikit-learn中机器学习聚类方法实战
Clustering聚类导论聚类方法概述K-means聚类导论在scikit-learn 中 未标记的数据的 聚类(Clustering) 可以使用模块sklearn.cluster来实现。每个聚类算法(clustering algorithm)都有两个变体: 一个是 类(class), 它实现了 fit 方法来学习训练数据的簇(cluster),还有一个 函数(function),当给定训...原创 2019-12-25 15:26:57 · 653 阅读 · 0 评论 -
决策树的各类概述
LogisticRegression1.决策树的前世今生1.1 什么是决策树1.2 决策树的构建1.3 sklearn中使用决策树2. 决策树的特征选择2.1 信息论相关概念2.2 信息熵2.3 条件熵2.4 信息增益2.5 信息增益率2.5.1 信息增益率的意义2.6 基尼系数3. 决策树的算法3.1 ID3算法3.2 C4.5算法3.3 Cart分类回归树3.3.1 Cart分类树3.3.2 ...原创 2019-12-18 11:03:56 · 738 阅读 · 0 评论 -
机器学习逻辑回归算法
LogisticRegression逻辑回归概述逻辑回归的背后逻辑逻辑回归的使用python代码的实现决策边界多项式思路对非线性决策边界数据进行分类sklearn中的逻辑回归及正则化构建回归数据sklearn中的逻辑回归多项式逻辑回归尝试过拟合模型正则化L2正则L1正则总结逻辑回归概述逻辑回归是目前就广泛使用较多的一种算法,能够贴合的场景也比较多,主要是他提现了数据建模中很重要的思想:对问题划...原创 2019-12-12 10:26:04 · 363 阅读 · 0 评论 -
机器学习之梯度下降
机器学习之梯度下降梯度下降的目的梯度下降的思想梯度下降的场景假设梯度下降代码梯度下降总结梯度下降的目的梯度下降不是一个机器学习算法,而是一种基于搜索的最优化方法。梯度下降(Gradient Descent, GD)优化算法,其作用是用来对原始模型的损失函数进行优化,以便寻找到最优的参数,使得损失函数的值最小。要找到使损失函数最小化的参数,如果纯粹靠试错搜索,比如随机选择1000个值,依次作为某...原创 2019-12-02 09:24:48 · 222 阅读 · 0 评论 -
线性回归与最小二乘法
简单线性回归&最小二乘法简单线性回归推导思路最小二乘法损失函数小结代码的实现一元线性回归多元线性回归简单线性回归而简单线性回归是属于回归(regression),即label为连续数值型(continuous numerical variable),如:房价、股票价格、降雨量等。所谓简单,是指只有一个样本特征,即只有一个自变量;所谓线性,是指方程是线性的;所谓回归,是指用方程来模拟变...原创 2019-11-29 16:39:04 · 1346 阅读 · 0 评论 -
机器学习特征工程与KNN详细探讨
机器学习特征工程1.什么是特征工程2.数据归一化2.1 最值归一化的实现2.2 均值方差归一化的实现2.3 Sklearn中的归一化3.KNN算法的优缺点探讨3.1KNN的主要优点:3.2 KNN的主要缺点3.3 KNN优化之KD树3.3.1 KD树的原理3.3.2 Sklearn中KDTree1.什么是特征工程特征在机器学习以及数据挖掘的过程中是最为重要的一个指标,在美团机器学习实践中曾探讨...原创 2019-11-21 10:15:10 · 965 阅读 · 1 评论 -
数据埋点的应用与探讨
数据埋点的应用与探讨1.数据埋点是什么?2.如何使用数据埋点?1.数据埋点是什么?一般的数据可分为两大类:流量数据,以用户访问产品,记录用户浏览行为核心的埋点数据日志;业务数据,以生产系统内存储的业务表单数据为核心的业务库数据记录;目前更多的数据挖掘是基于业务数据以及相关的业务知识为基础和前提的情况下对数据进行深入的分析和挖掘.而数据埋点则更多的是采集用户的行为数据,通过用户的行为...原创 2019-11-15 16:49:59 · 307 阅读 · 0 评论 -
机器学习分类与线性评价结果
KNN-machine leanring notes1.分类准确度够用吗?2.什么是混淆矩阵?3.究竟什么评价指标更合适?4.ROC曲线4.1分类阈值、TPR和FPR4.1.1分类阈值4.1.2 TPR4.1.3 FPR4.2 ROC曲线4.2.1 分析5 AUC6 分类精确度总结7 线性回归的评价指标8 线性回归代码评价的实现8.1 简单线性回归预测9 R Square介绍10 简单线性回归总结...原创 2019-11-13 15:59:33 · 435 阅读 · 0 评论 -
机器学习KNN算法(二)
KNN-machine leanring notes1.数据预处理2.分类精准度3.超参数3.1 超参数简介3.2超参数一-对于KNN来说寻找最好的K3.3 超参数二-权重3.4超参数网格搜索总结1.数据预处理通常情况下我们的数据集都是按照一定规律导出,这时我们需要通过一定的方法都数据集进行打乱,这样才能更好的符合随机抽样的过程# 方法1# 使用concatenate函数进行拼接,因为传入的...原创 2019-11-13 15:23:07 · 414 阅读 · 0 评论 -
机器学习KNN算法使用指南
KNN-machine leanring notesKNN 算法简介KNN 算法流程KNN实现过程Sklearn总结KNN 算法简介kNN(k-NearestNeighbor),也就是k最近邻算法。顾名思义,所谓K最近邻,就是k个最近的邻居的意思。也就是在数据集中,认为每个样本可以用离他最距离近的k个邻居来代表。–百度该算法就是用来找数据点在该纬度的数据空间中,离哪一些点的样本更接近,通过相...原创 2019-11-05 16:27:04 · 1556 阅读 · 0 评论