一、项目背景
在电商行业蓬勃发展的当下,数据驱动决策成为企业发展的关键。本次分析聚焦淘宝中某店铺在双十一的销售数据,旨在挖掘销售规律、洞察市场需求,为店铺运营策略调整、产品优化及营销活动规划提供有力支撑。
二、数据来源与处理
- 数据来源:通过Python Faker库生成虚拟数据,女装的销量、销售额、客单价、复购率等销售数据,购买人群、购买常住地址、消费时间、消费频次等用户画像数据。
-
数据处理:运用 MySQL 进行数据清洗,去除重复值、异常值,填补缺失数据,确保数据准确性与完整性;使用 Python 的 Pandas、Numpy 等库进行数据整理、合并与计算。
三、报告主题内容
两个报告
1. XX网店热销产品与滞销产品分析
o 内容:列出畅销产品和滞销产品,分析原因,调整库存或营销策略。
o 数据来源:产品表,商品表
o 分析方法:描述性统计、趋势分析、对比分析。
o 输出:PDF或Excel报告,包含图表和结论。
2.XX网店促销活动效果分析报告
o 内容:分析双十一促销活动(如打折、满减、赠品等)的效果,了解双十一活动方式带来了什么收益区别。
o 数据来源:商品销售表
o 分析方法:描述性统计、趋势分析、对比分析。
o 输出:PDF或Excel报告,包含图表和结论。
三个看板
1.XX网店销售业绩分析月报看板
o 功能:分析一个月内的总销售额、订单数量、客户来源、销售增长趋势等,评估整体业务表现。
o 数据来源:产品表
o 展示形式:条形图,折线图,柱状图
2.XX网店用户画像分析看板
o 功能:分析顾客的购买频率、购买时间、购买习惯以及用户画像,购买地域,年龄,性别,帮助改进营销策略。
o 数据来源:用户表
o 展示形式:条形图,饼图,南丁格尔图,柱状图
3.XX网店竞争对手销售看板
o 功能:分析主要竞争对手的产品、价格、销售表现等,为制定市场竞争策略提供依据。
o 数据来源:竞争对手表
o 展示形式:条形图,柱状图
四、数据需求:
1. 商品表:
o 商品ID,商品名称,分类,品牌,现价,库存数量,尺码,颜色,商品图片,上架状态 ,SKU
2. 产品表:
o用户ID,姓名,联系方式,商品ID,商品名称,规格/型号,购买数量,订单编号,订单状态,支付方式,商品单价,订单总价,收货地址,物流公司名称,物流单号
3.用户表
o 用户 ID、姓名、性别、年龄、联系方式、常住地址、消费频次、消费金额、消费时间、购买品类、购买渠道
4. 竞争对手表:
o 竞争对手的唯一标识符、竞争对手的名称、产品或服务的详细描述、产品或服务的种类、产品或服务的价格、服务范围(包括售后服务、技术支持等)、销售时间、销售渠道(包括线上和线下渠道)、目标客户群体
5. 商品销售表:
o 销售记录 ID、商品 ID、订单 ID、用户 ID、销售数量、销售单价、销售总价、销售时间、折扣金额、促销活动 ID、销售渠道、销售地区、销售状态