线性代数
冰霜行者6
这个作者很懒,什么都没留下…
展开
-
【线性代数6】线性变换(下)
线性变换接上一篇线性变换(中)上一篇博客中我写了一些常见的线性变换。实际上,我们可以用一个矩阵AAA来表示线性变换TTT。根据线性变换的性质,T(a1v1+a2v2+⋯+anvn)=a1T(v1)+a2T(v2)+⋯+anT(vn)T(a_1v_1+a_2v_2+\cdots+a_nv_n)=a_1T(v_1)+a_2T(v_2)+\cdots+a_nT(v_n)T(a1v1+a2v2...原创 2020-02-22 11:42:01 · 637 阅读 · 0 评论 -
【线性代数5】线性变换(中)
线性变换接上一篇线性变换(上)我们今天来讨论关于平面向量的线性变换。在这里,我先说一个引理,根据线性变换的定义,T(cv)=cT(v),T(u+v)=T(u)+T(v)T(cv)=cT(v),T(u+v)=T(u)+T(v)T(cv)=cT(v),T(u+v)=T(u)+T(v),那也可以证明T(c1v1+c2v2+c3v3+⋯+cnvn)=c1T(v1)+c2T(v2)+⋯+cnT(vn...原创 2020-02-21 20:18:03 · 1149 阅读 · 0 评论 -
【线性代数4】线性变换(上)
线性变换上次说到,矩阵AAA与向量xxx的乘积仍然是一个向量bbb,。已知A,bA,bA,b计算xxx的方法就是用增广矩阵[Ab]\begin{bmatrix}A&b\end{bmatrix}[Ab]A,b,xA,b,xA,b,x矩阵满足的关系是AAA行数是bbb的维度,AAA列数是xxx维度既然如此,我们可以建立一个从nnn维向量到mmm维向量的映射:T(x)=AxT(x)=A...原创 2020-02-21 18:37:49 · 704 阅读 · 0 评论 -
【线性代数3】矩阵方程Ax=b
矩阵方程在说矩阵方程之前,先来回忆一下矩阵乘法。特别地,A=[a1a2a3⋯an]A=\begin{bmatrix}a_1&a_2&a_3&\cdots&a_n\end{bmatrix}A=[a1a2a3⋯an]x=[x1x2x3⋮xn]x=\begin{bmatrix}x_1\\x_2\\x_3\\\vdots\\x_n\end{bmatr...原创 2020-02-21 10:24:13 · 6140 阅读 · 1 评论 -
【线性代数2】向量
向量向量可以理解成仅含一列的矩阵。包含两个元素的向量称为平面向量,包含三个元素的向量称为空间向量。向量通常用u,v,wu,v,wu,v,w表示。下面的矩阵都是向量u=[2−3],v=[30]u=\begin{bmatrix} 2\\-3\end{bmatrix},v=\begin{bmatrix}3\\0 \end{bmatrix}u=[2−3],v=[30]向量的计算如下加法&a...原创 2020-02-20 22:16:02 · 667 阅读 · 0 评论 -
【线性代数1】线性方程组
线性方程组首先,我们来说一下定义:线性方程:表示成a_1x_1+a_2x_2+a_3x_3+\cdots+a_nx_n=c$的方程称为线性方程。比如2x1−2=3x2,3x1+2−2x2=2x2−2+12x32x_1-2=3x_2,3x_1+2-2x_2=\sqrt2x_2-2+\dfrac12x_32x1−2=3x2,3x1+2−2x2=2x2−2+21x3都是线性方程,而...原创 2020-02-20 21:24:54 · 2153 阅读 · 0 评论