傅里叶级数

傅里叶级数是将周期函数表示为无限正弦和余弦函数的和,通过傅里叶系数an和bn来求解。傅里叶提出了一个公式,利用定积分和三角函数的性质,能够计算出周期函数的傅里叶级数,进一步通过欧拉公式进行简化,最终建立了函数在时间域和频率域的映射关系。
摘要由CSDN通过智能技术生成

傅里叶级数

从前,有个名叫傅里叶的同学,有一天,他突发奇想,大笔一挥,写下了一个又大又长的公式:

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) f(t)=\dfrac{a_0}2+\sum\limits_{n=1}^{\infty}(a_n\cos n\omega t+b_n\sin n\omega t) f(t)=2a0+n=1(ancosnωt+bnsinnωt)

a n = 2 T ∫ − T 2 T 2 f ( t ) cos ⁡ ( n ω t ) d t a_n=\dfrac2T\int_{-\frac T2}^{\frac T2}f(t)\cos(n\omega t)\mathrm dt an=T22T2Tf(t)cos(nωt)dt

b n = 2 T ∫ − T 2 T 2 f ( t ) sin ⁡ ( n ω t ) d t b_n=\dfrac2T\int_{-\frac T2}^{\frac T2}f(t)\sin(n\omega t)\mathrm dt bn=T22T2Tf(t)sin(nωt)dt

这是神马鬼?Are you kidding?

事实上,这位傅里叶奆佬的想法很简单,能不能用正弦函数来表示所有函数呢?

于是,他假设一个周期为 T T T的周期函数 f ( t ) = a 0 + ∑ n = 1 ∞ ( a n sin ⁡ n ω t + b n cos ⁡ n ω t ) f(t)=a_0+\sum\limits_{n=1}^{\infty}(a_n\sin n\omega t+b_n\cos n\omega t) f(t)=a0+n=1(ansinnωt+bncosnωt)

也就是说,用周期为 T , 2 T , 3 T , . . . T,2T,3T,... T,2T,3T,...的正弦和余弦函数表示 f ( t ) f(t) f(t)

大致框架有了,就差求出 a n , b n a_n,b_n an,bn的值了。

事实上,这并不容易。首先证明引理:

在三角函数系{ 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , sin ⁡ 3 x , cos ⁡ 3 x , . . . 1,\sin x,\cos x,\sin2x,\cos2x,\sin3x,\cos3x,... 1,sinx,cosx,sin2x,cos2x,sin3x,cos3x,...}中,任取两个函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),若 f ( x ) ≠ g ( x ) f(x)\neq g(x) f(x)=g(x),必然满足:

∫ − π π f ( x ) g ( x ) d x = 0 \int_{-\pi}^{\pi}f(x)g(x)\mathrm dx=0 ππf(x)g(x)dx=0

f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),则:

∫ − π π f ( x ) 2 d x = π \int_{-\pi}^{\pi}f(x)^2\mathrm dx=\pi ππf(x)2dx=π

假如你有函数绘图软件,多画几个函数图像,你就知道为什么这个是对的了。

拓展到任意周期三角函数系:

在三角函数系{ 1 , sin ⁡ ω t , cos ⁡ ω t , sin ⁡ 2 ω t , cos ⁡ 2 ω t , sin ⁡ 3 ω t , cos ⁡ 3 ω t , . . . 1,\sin\omega t,\cos\omega t,\sin2\omega t,\cos2\omega t,\sin3\omega t,\cos3\omega t,... 1,sinωt,cosωt,sin2ωt,cos2ωt,sin3ωt,cos3ωt,...}

任取函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)

f ( x ) ≠ g ( x ) f(x)\ne g(x) f(x)=g(x),则 ∫ − T 2 T 2 f ( x ) g ( x ) d x = 0 \int_{-\frac T2}^{\frac T2}f(x)g(x)\mathrm dx=0 2T2Tf(x)g(x)dx=0

f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),则 ∫ − T 2 T 2 f ( x ) 2 = T 2 \int_{-\frac T2}^{\frac T2}f(x)^2=\frac T2 2T2Tf(x)2=2T

上述引理可以用积化和差公式证明

接着,就轮到傅里叶奆佬出场了,傅里叶奆佬秀了一波操作:

f ( t ) = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) f(t)=a_0+\sum\limits_{n=1}^{\infty}(a_n\cos n\omega t+b_n\sin n\omega t) f(t)=a0+n=1(ancosnωt+bnsinnωt)

∫ − T 2 T 2 f ( t ) d t = ∫ − T 2 T 2 a 0 d t + ∫ − T 2 T 2 ∑ n = 1 ∞ ( a n cos ⁡ n ω t + b n sin ⁡ n ω t ) d t \int_{-\frac T2}^{\frac T2}f(t)\mathrm dt=\int_{-\frac T2}^{\frac T2}a_0\mathrm dt+\int_{-\frac T2}^{\frac T2}\sum\limits_{n=1}^\infty(a_n\cos n\omega t+b_n\sin n\omega t)\mathrm dt 2T2Tf(t)dt=2T2Ta0dt+2T2Tn=1(ancosnωt+bnsinnωt)dt

根据定积分的性质,将其化成

∫ − T 2 T 2 f ( t ) d t = a 0 T + ∑ n

  • 19
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 11
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值