【线性代数6】线性变换(下)

线性变换

接上一篇线性变换(中)

上一篇博客中我写了一些常见的线性变换。实际上,我们可以用一个矩阵 A A A来表示线性变换 T T T

根据线性变换的性质, T ( a 1 v 1 + a 2 v 2 + ⋯ + a n v n ) = a 1 T ( v 1 ) + a 2 T ( v 2 ) + ⋯ + a n T ( v n ) T(a_1v_1+a_2v_2+\cdots+a_nv_n)=a_1T(v_1)+a_2T(v_2)+\cdots+a_nT(v_n) T(a1v1+a2v2++anvn)=a1T(v1)+a2T(v2)++anT(vn)

你连矩阵 A A A都不用知道,只需要知道向量 v 1 v_1 v1 v n v_n vn线性变换后的值,就可以计算出任意向量 v v v经过线性变换后的值。也就是,你可以自己定义线性变换。

就以平面向量为例,设 e 1 = [ 1 0 ] , e 2 = [ 0 1 ] e_1=\begin{bmatrix}1\\0\end{bmatrix},e_2=\begin{bmatrix}0\\1\end{bmatrix} e1=[10],e2=[01]

假如我已知 T ( e 1 ) = [ 5 − 7 2 ] , T ( e 2 ) = [ − 3 8 0 ] T(e_1)=\begin{bmatrix}5\\-7\\2\end{bmatrix},T(e_2)=\begin{bmatrix}-3\\8\\0\end{bmatrix} T(e1)=572,T(e2)=380

因为 x = [ x 1 x 2 ] = [ x 1 0 ] + [ 0 x 2 ] = x 1 e 1 + x 2 e 2 x=\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}x_1\\0\end{bmatrix}+\begin{bmatrix}0\\x_2\end{bmatrix}=x_1e_1+x_2e_2 x=[x1x2]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值