计算机视觉
文章平均质量分 72
brycezou
热爱图像分析、机器学习、智能硬件、机器人技术
展开
-
计算机视觉——高斯滤波
计算机视觉—高斯滤波 brycezou@163.com 1、高斯滤波函数 1)一维高斯分布 G(x)=12π‾‾‾√σe−x22σ2G(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}} 2)二维高斯分布 G(x,y)=12πσ2e−x2+y22σ2G(x,y)=\frac{1}{2\pi\sigma^2}e^{原创 2016-10-09 00:39:53 · 900 阅读 · 0 评论 -
计算机视觉——DoG和LoG算子
计算机视觉—DoG和LoG算子 brycezou@163.com 阅读本文,需要有一定的数字图像处理基础,否则不太容易明白数学公式想要传达的物理意义。希望通过仅此一篇文章就能让你理解图像处理中的高斯滤波(也叫高斯平滑、高斯模糊、高斯卷积)、DoG算子、LoG算子,以及它们之间的关系。下面先讲理论,再讲实际应用。在理论部分,一切语言都显得过于苍白,因此我只给出了最核心的、最简原创 2016-10-12 01:32:02 · 17623 阅读 · 3 评论 -
计算机视觉——相机标定
计算机视觉—相机标定 brycezou@163.com 0、预备知识 下图基本展示了一些重要的概念:点 OO 与Xc,Yc,ZcX_c,Y_c,Z_c三个轴组成的坐标系为相机坐标系,其中,原点 OO 为相机光心,ZcZ_c为相机的光轴,光轴和成像平面 xO1yxO1y 垂直,且光轴与成像平面的交点为图像的主点 O1O1,OO1OO1 为相机的焦距 ff,XcOYcX_c原创 2016-09-28 01:40:04 · 2328 阅读 · 0 评论 -
计算机视觉——OpenCV中的SIFT(应用)
计算机视觉—OpenCV中的SIFT(应用) brycezou@163.com#include <opencv2/opencv.hpp>#include <opencv2/nonfree/features2d.hpp>#include <iostream>using namespace std;using namespace cv;int main(int argc, char *原创 2016-10-25 00:02:56 · 659 阅读 · 0 评论 -
计算机视觉——SIFT算法之高斯金字塔
计算机视觉—SIFT算法之高斯金字塔 brycezou@163.com1、高斯金字塔–>DoG金字塔 在理论上,输入图像需要先分别与不同尺度的高斯核进行卷积,然后求两幅图像的差。而在实际中更为简单,如图所示,高斯金字塔相邻两层相减,便可以得到 DoGDoG 金字塔。这是因为,高斯金字塔每层中的多幅图像,原本就是通过对同一幅输入图像进行不同尺度的高斯卷积得来的。关于高斯金字塔原创 2016-10-16 20:06:19 · 9744 阅读 · 0 评论 -
计算机视觉——Harris角点检测
计算机视觉—Harris角点检测 brycezou@163.com 1、全微分 定义:如果函数 z=f(x,y)z=f(x,y) 在定义域 DD 的内点 (x,y)(x,y) 处全增量 Δz=f(x+Δx,y+Δy)−f(x,y)\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) 可以表示成 Δz=AΔx+BΔy+o(ρ),ρ=(Δx)原创 2016-10-20 00:29:03 · 1226 阅读 · 0 评论 -
计算机视觉——卡尔曼滤波
计算机视觉—卡尔曼滤波 brycezou@163.com 整篇文章参考微信公众号【电子搬砖师】,有兴趣的读者可以关注一下,感谢作者! 最近发现,只有理论推导而没有贴实用代码的博客阅读量都比较少,由此可见,技术博客也是快餐文化的一种。本人后面的博客尽量也贴一些典型代码,来满足更读者的胃口。卡尔曼滤波算法相关的代码后续补上\^_\^0、卡尔曼滤波的核心内容假设测量原创 2016-12-18 22:42:20 · 2449 阅读 · 0 评论