计算机视觉——SIFT算法之高斯金字塔

本文深入探讨了SIFT算法中的关键步骤——高斯金字塔及其转换为DoG金字塔的过程。首先介绍了高斯金字塔的构建原理,接着详细阐述了在SIFT算法中的作用,然后通过实例展示如何构造高斯金字塔。文章对于理解SIFT算法和图像处理有重要参考价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


计算机视觉—SIFT算法之高斯金字塔


brycezou@163.com


1、高斯金字塔–>DoG金字塔


       在理论上,输入图像需要先分别与不同尺度的高斯核进行卷积,然后求两幅图像的差。而在实际中更为简单,如图所示,高斯金字塔相邻两层相减,便可以得到 DoG 金字塔。这是因为,高斯金字塔每层中的多幅图像,原本就是通过对同一幅输入图像进行不同尺度的高斯卷积得来的。关于高斯金字塔的构造方法,请继续阅读下文。
D(x,y,σ)=(G(x,y,kσ)G(x,y,σ))I(x,y)




2、SIFT算法中的高斯金字塔


       图像金字塔模型是指,将原始图像不断降阶采样,得到一系列大小不一的图像,由大到小,自底向上构成的塔状模型。原始图像为金字塔的第一层,每次降采样得到的新图像为金字塔的一层(每层一张图像)。

       SIFT算法中的高斯金字塔略有不同。为了让尺度体现其连续性,在简单下采样的基础上添加了多尺度的高斯滤波。一幅图像可以产生几组(Octave)图像,一组图像又包括几层(Interval)图像,并且组数和金字塔的层数相等。





       为了在每组图像中检测 S 个尺度的极值点, DoG 金字塔每组需 S+2 层图像,因为每组的第一层和最后一层图像上不能检测极值,如图;而 DoG 金字塔由高斯金字塔相邻两层相减得到,则高斯金字塔每组需 S+3 层图像,实际计算时 S 通常在3到5之间。SIFT算法中生成高斯金字塔的规则如下:

       设高斯金字塔共包含 O 组图像,每组图像有 S+3 层,
O=log2(min{ M,N})3

其中, M,N 分别为原始图像的行数和列数。

       设位于金字塔底的第1组的第1层图像,其高斯滤波的尺度为
σ(o=1,s=1)=σ(1)1

则位于第1组的其它层图像的高斯滤波尺度分别为


       σ(o=1,s=2)=σ(1)2=kσ(1)1

       σ(o=1,s=3)=σ(1)3=kσ(1)2=k2σ(1)1

             

       σ(o=1,s=S+3)=σ(1)S+3=kσ(1)S+2==kS+2σ(1)1


同理,位于第2组的各层图像的高斯滤波尺度分别为


       σ(o=2,s=1)=σ(2)1

       σ(o=2,s=2)=kσ(2)1

   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值