计算机视觉—SIFT算法之高斯金字塔
brycezou@163.com
1、高斯金字塔–>DoG金字塔
在理论上,输入图像需要先分别与不同尺度的高斯核进行卷积,然后求两幅图像的差。而在实际中更为简单,如图所示,高斯金字塔相邻两层相减,便可以得到 DoG 金字塔。这是因为,高斯金字塔每层中的多幅图像,原本就是通过对同一幅输入图像进行不同尺度的高斯卷积得来的。关于高斯金字塔的构造方法,请继续阅读下文。
D(x,y,σ)=(G(x,y,kσ)−G(x,y,σ))∗I(x,y)
2、SIFT算法中的高斯金字塔
图像金字塔模型是指,将原始图像不断降阶采样,得到一系列大小不一的图像,由大到小,自底向上构成的塔状模型。原始图像为金字塔的第一层,每次降采样得到的新图像为金字塔的一层(每层一张图像)。
SIFT算法中的高斯金字塔略有不同。为了让尺度体现其连续性,在简单下采样的基础上添加了多尺度的高斯滤波。一幅图像可以产生几组(Octave)图像,一组图像又包括几层(Interval)图像,并且组数和金字塔的层数相等。
为了在每组图像中检测 S 个尺度的极值点,
设高斯金字塔共包含
O=log2(min{
M,N})−3
其中, M,N 分别为原始图像的行数和列数。
设位于金字塔底的第1组的第1层图像,其高斯滤波的尺度为
σ(o=1,s=1)=σ(1)1
则位于第1组的其它层图像的高斯滤波尺度分别为
σ(o=1,s=2)=σ(1)2=kσ(1)1
σ(o=1,s=3)=σ(1)3=kσ(1)2=k2σ(1)1
⋯
σ(o=1,s=S+3)=σ(1)S+3=kσ(1)S+2=⋯=kS+2σ(1)1
同理,位于第2组的各层图像的高斯滤波尺度分别为
σ(o=2,s=1)=σ(2)1
σ(o=2,s=2)=kσ(2)1