深度学习的主要大牛
Hinton个人主页:http://www.cs.toronto.edu/~hinton/
LeCun个人主页:http://yann.lecun.com/
Bengio个人主页:http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html
Andrew Ng 个人主页:http://cs.stanford.edu/people/ang/
CNN网络资料
AlexNet进化史:http://blog.csdn.net/cyh_24/article/details/51440344
我看AlexNet:http://www.jianshu.com/p/58168fec534d/comments/2267528
Deep Learning回顾:http://blog.csdn.net/chenyj92/article/details/52667526
AlexNet学习笔记:http://www.2cto.com/kf/201608/533035.html
AlexNet的实现:http://blog.csdn.net/sunbaigui/article/details/39938097
BN:http://www.360doc.com/content/16/0603/07/1317564_564631399.shtml
RNN网络资料
Jacobian矩阵和Hessian矩阵:http://jacoxu.com/?p=146
RNN学习笔记:http://blog.csdn.net/rtygbwwwerr/article/details/50367015
LSTM基本结构:http://www.open-open.com/lib/view/open1440843534638.html
LSTM训练:http://blog.csdn.net/shincling/article/details/49362161
Caffe和Tensorflow
cnblog中的资料:http://www.cnblogs.com/denny402/tag/
深度学习论文资料
深度学习学习路径:https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap#310-other-frontiers
caffe-tensorflow学习代码
caffe-tensorflow:https://github.com/ethereon/caffe-tensorflow
tensorflow-vgg16:https://github.com/ry/tensorflow-vgg16
caffe-model:https://github.com/soeaver/caffe-model
VGG Very_Deep:http://www.robots.ox.ac.uk/~vgg/research/very_deep/
工具网站
将prototxt文件可视化的网站:http://ethereon.github.io/netscope/quickstart.html
GAN和Attention Memory论文:
http://mp.weixin.qq.com/s?__biz=MzIwMTc4ODE0Mw==&mid=2247483965&idx=1&sn=5d8c848e6d5607c68a8e193b5de4898b&chksm=96e9ddbda19e54abe400eb637a4f4f730285b04421ed34e065d523cacfe61b48f8ceb266f70a&scene=4#wechat_redirect
http://blog.csdn.net/solomon1558/article/details/52555083
ICLR 2017深度学习(提交)论文汇总:NLP、无监督学习、自动编码、RL、RNN(150论文下载)
http://it.sohu.com/20161113/n473045543.shtml?utm_source=tuicool&utm_medium=referral
PaperWeekly: http://rsarxiv.github.io/archives/
residual tensorflow:
https://github.com/search?utf8=%E2%9C%93&q=residual++tensorflow&type=Repositories&ref=searchresults
TensorFlow安装:
安装问题:http://blog.csdn.net/w12345_ww/article/details/52291055
安装命令:http://www.ifcoder.us/2003
GAN在GitHub中的搜索:https://github.com/search?p=4&q=adversarial+tensorflow&ref=searchresults&type=Repositories&utf8=%E2%9C%93