基于X线影像的深度学习模型预测骨密度的研究进展

基于X线影像的深度学习模型预测骨密度的研究进展

摘要

骨质疏松症(OP)已经成为影响老年人生活质量的重要疾病之一,早期诊断和治疗尤为重要。骨密度(BMD)测量是诊断OP的主要依据,双能X线吸收法(DXA)为目前测量BMD的金标准,但DXA也存在一定局限性。随着人工智能技术的发展,基于X线影像的深度学习模型为BMD预测提供了新的方法。本文就基于X线影像的深度学习模型预测BMD的研究进展予以综述。

关键词

骨密度;深度学习;骨质疏松症;X线

一、引言

骨质疏松症(osteoporosis,OP)是一种以骨量低下、骨微结构破坏,导致骨脆性增加、易发生骨折为特征的全身性骨病。随着人口老龄化加剧,OP已成为影响老年人生活质量的重要公共健康问题。早期诊断和治疗对预防OP骨折、降低医疗成本至关重要。骨密度(bone mineral density,BMD)测量是诊断OP的主要依据,世界卫生组织(World Health Organization,WHO)推荐基于双能X线吸收法(dual-energy X-ray absorptiometry,DXA)测量的BMD结果用于OP诊断。然而,DXA存在设备昂贵、辐射剂量相对较高、对软组织分辨力低等局限性,限制了其在基层医疗机构的普及和大规模人群筛查中的应用。

近年来,深度学习作为人工智能领域的重要分支,在医学影像分析中展现出巨大潜力。X线影像具有广泛可得性、低辐射剂量和低成本等优势,基于X线影像的深度学习模型为BMD预测提供了新途径,有望实现OP的早期筛查和精准诊断。本文将对基于X线影像的深度学习模型预测BMD的研究进展进行综述。

二、骨密度测量方法概述

2.1 双能X线吸收法

DXA通过发射两种不同能量的X线穿透人体,根据不同能量X线被骨骼和软组织吸收的差异,计算出BMD值。其测量部位主要包括腰椎、股骨近端等,具有较高的准确性和重复性,是目前临床诊断OP的金标准。然而,DXA也存在一些缺点,如对骨赘、血管钙化等干扰因素敏感,会导致BMD测量值假性升高;二维成像方式无法区分皮质骨和松质骨,不能准确反映骨骼内部结构;设备价格昂贵,维护成本高,限制了其在基层医院的推广。

2.2 定量计算机断层扫描

定量计算机断层扫描(quantitative computed tomography,QCT)可在三维空间对骨骼进行成像,能分别测量皮质骨和松质骨的BMD,对早期OP的诊断具有较高敏感性。特别是在检测脊柱等富含松质骨部位的骨量变化时,QCT优于DXA。但QCT辐射剂量相对较高,检查费用也较高,且需要特殊的体模进行校准,操作较为复杂,在一定程度上限制了其临床应用。

2.3 超声骨密度测量

超声骨密度测量是一种无辐射、无创的检查方法,主要通过测量超声在骨骼中的传播速度、振幅衰减等参数来间接反映BMD。该方法操作简便、价格相对低廉,适用于大规模人群筛查,尤其是儿童和孕妇等对辐射敏感的人群。然而,超声骨密度测量结果受测量部位、软组织厚度等因素影响较大,准确性和特异性相对较低,不能作为OP诊断的金标准,主要用于OP的初步筛查和骨折风险评

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值