目录
引言
在数据工程实践中,传统星型/雪花模型常面临跨粒度分析复杂度高、多表关联性能差、维度更新一致性难保障等痛点。多事实粒度宽表通过合理冗余事实与维度属性,将不同粒度的业务数据整合至单表,从根本上解决上述问题,是支撑高效BI分析与业务决策的核心工具。 设计多事实粒度宽表的核心是将不同业务粒度的事实数据(如用户粒度、订单粒度、商品粒度)与维度信息整合到一张表中,以支持跨粒度的快速分析。其本质是通过粒度对齐和维度扁平化,平衡“查询效率”与“数据冗余”,解决传统星型/雪花模型中多表关联的性能瓶颈。
一、核心概念界定
在设计前,需明确三个核心概念:
-
事实粒度:事实表中每条记录代表的业务事件细化程度,例如: