GAMES101-现代计算机图形学入门-闫令琪——Lecture 03 Transformation

本文介绍了计算机图形学中2D旋转、缩放和切变变换的基本概念,探讨了齐次坐标在表达平移中的优势,并深入讲解了仿射变换、逆变换和变换组合。3D变换部分则涉及线性变换和平移的齐次坐标表示。重点在于模型变换和视图变换在游戏和设计中的实际运用。
摘要由CSDN通过智能技术生成

GAMES101-现代计算机图形学入门-闫令琪——Lecture 03 Transformation

Why study transformation

  • modeling 模型变换
  • Viewing 视图变换

2D transformations: rotation, scale, shear

线性变换:
在这里插入图片描述

rotation: 旋转

不规定的时候,旋转都是基于原点,是逆时针旋转。
在这里插入图片描述
可以用极坐标得到上面的式子。

scale: 缩放

在这里插入图片描述
在这里插入图片描述

shear: 切变

在这里插入图片描述

Homogeneous coordinates 齐次坐标

  • 为什么要用齐次坐标?因为平移很特殊。不能写成矩阵相乘的形式。平移不是线性变换。
  • 但是我们不希望把平移当成特殊的。有没有办法把他们都变成简单的形式表示?
  • 解决方法:引入齐次坐标,增加第三个坐标。

Homogenous coordinates

在这里插入图片描述

  • 向量具有平移不变性,所以第三维是0,平移以后也不会变。
    在这里插入图片描述
  • 引入新的定义:如果第三维不是1或零,那么:
    在这里插入图片描述
  • 将上面的变换变成齐次坐标的形式:
    在这里插入图片描述

点加点

  • 从上面的式子可以得出点加点是两点的中心点

Affine Transformations仿射变换

在这里插入图片描述

  • 所有的仿射变换可以变成齐次坐标的形式:只有仿射变换下面才是001,投影变换会有变化
    在这里插入图片描述

Inverse Transform 逆变换

在这里插入图片描述

  • 就是乘以其逆矩阵

Composing transforms

变换顺序

每变换一次,就往左乘一个,变换的顺序是十分重要的。

  • 先旋转后平移
    在这里插入图片描述

多次变换

在这里插入图片描述

  • 可以用三乘三的矩阵做十分复杂的操作

变换分解

想换中心旋转怎么办:

  • 先把旋转中心平移到原点,再旋转,再移回去
    在这里插入图片描述

3D transformations

表示:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

齐次坐标的形式是先线性变换再平移

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值