机器学习
文章平均质量分 84
西岸行者
问君能有几多愁,恰似一只鸡腿进不了口
展开
-
docker 使用pytorch在gpu上训练模型
docker 使用pytorch在gpu上训练模型安装docker下载docker image建立启动容器进入docker虚拟空间不一定能运行起来安装dockersudo apt-get -y install docker.io不是sudo apt-get install docker虽然后者也能安装成功但是无法启动。下载docker image在docker hub上寻找pytorch的image,然后下载sudo docker pull pytorch/pytorch建立启动容器原创 2021-09-01 16:42:04 · 1227 阅读 · 0 评论 -
统计模型和贝叶斯方法在对数功率谱域的噪声鲁棒性应用
统计模型和贝叶斯方法在对数功率谱域的噪声鲁棒性应用统计模型和贝叶斯方法贝叶斯估计MAP最大后验概率和ML最大似然估计EM方法估计GMM的参数对数功率谱域的降噪范式参考文档统计模型和贝叶斯方法语音增强的问题是离不开统计模型框架的,即从一组未知参数的观察值,找出未知参数的估计器。这些估计器最具代表的是最大似然ML和最大后验MAP两种方法,MAP被认为是bayesian估计器是没有异议的,但【1】中认为ML属于假设一组未知但确定的参数θ\thetaθ,通过观察值yyy来寻找是p(y;θ)p(y;\theta)原创 2021-06-29 15:30:17 · 282 阅读 · 0 评论 -
FSL小样本学习few-shot learning知识点整理
虽然deeplearning在语音视频和语言处理上有了革命性的进步,数据增强和正则化技术也是的小数据样本的过拟合问题得到了改善,但是距离大数据大模型的差距还是存在的。本文结合《Matching Networks for One Shot Learning》,《Domain-Adaptive Few-Shot Learning》和《Prototypical Networks for Few-shot Learning》三篇论文的内容,梳理一下few shot learning的一些知识点,试图探究一下提高小样原创 2021-02-02 18:20:42 · 2379 阅读 · 0 评论 -
TripletsLoss不是解决距离的银色子弹,而是打开度量学习的大门钥匙
在deeplearning时代,姑且肤浅的将表征学习理解成变成向量后的度量学习吧。就解决问题的角度而言,表征学习是建模,抽象到异次元,度量学习是把异次元的东西再量化到三维空间,用“横看成岭侧成峰”来比喻他们作为解决问题(庐山)的两个方面(岭峰)再合适不过了。而用“远近高低各不同”来理解度量学习中各种loss策略,好像也很形象,看来苏轼真的很懂机器学习啊。原创 2020-11-06 18:26:58 · 2050 阅读 · 1 评论 -
高维向量的相似度判定-距离产生了,美还在吗
“海内存知己,天涯若比邻”,古人用心理距离辨证了时空距离,机器学习何尝不是,看似毫不相关或者毫无头绪的分类问题,由于采用了合适的数学距离,就将它们在高维度空间分开了,展现在三维空间里,很多神奇的事情令人难以置信。现实中,我们做神经网络分类或者编码时,loss函数往往需要根据‘distance’来设计,这些distance理解起来是比较烧脑的,下面这个笔记整理些常用的距离,系统的分析一下这些距离的前世今生,看看哪些距离美到令人窒息,还有哪些距离令人痛苦的不能自拔?原创 2020-10-27 19:10:21 · 6199 阅读 · 3 评论 -
回顾理解Triplet-loss
用三国人物刘关张和诸葛亮的关系来类比一下APN三个兄弟和三种loss 标准原创 2020-10-22 17:54:48 · 1673 阅读 · 1 评论 -
seaborn散点图中的质心标注方法
散点图中的质心标注方法前言质心标注参考前言t-SNE Python Example文章有一张散点图的动图,被各大博主拿来分享,我也贴一下,这个图确实比较震撼。除了会动,还有一个震撼之处就是标注的数字会随着点的散开而动,很遗憾原来的文章不是绣这个操作的,没看到实现方法,但是由此推断这个标注应该在分类样本的质心(坐标均值)上,那么这种质心标注有没有用呢?答案是有用,非常有用,尤其当分类样本多、分类点分散以及某些分类聚集的时候,散点图有时不那么直观,比如下图超过50个类别的情况,虽然利用颜色、样式(也可以原创 2020-10-22 11:43:18 · 1436 阅读 · 0 评论 -
利用t-sne算法和散点图工具对高维数据的可视化分析
利用t-sne算法和散点图工具对高维数据的可视化分析前言python散点图工具seaborn和sklearn实现的t-SNE推荐一个算法推演t-SNE的实例前言这是一篇汇总性质的资料收集,将t-sne和散点图工具的资料传一下。t-SNE是基于t分布(t distributed)的随机邻近嵌入(StochasticNeighborEmbedding),StochasticNeighborEmbedding是杰弗雷辛顿(GeoffreyHinton)在2003年主笔提出来的降维方法,t-SNE是Lauren原创 2020-10-21 15:42:28 · 5136 阅读 · 3 评论 -
Zero shot Learning 论文学习笔记(未完待续)
我跨过山河大海,也穿过人山人海......前面还是高山大海,人山人海。初入机器学习的大门,爬上DEEPLEARNING的高山,发现前面还是高山,更多,更高,更难爬......ZST就是一座待爬的高山,很显然,“不学习就会ZST”,“或者一学就会OST”的愿景是美好的,正如小时候看的武侠小说和电影里讲的回梦心经等等神奇武功,但现实却告诉你,要想达成这样的本领,你要学的就更多了,学多了就可以触类旁通,事半功倍,机器学习也是这个道理。原创 2020-10-19 19:17:04 · 1746 阅读 · 1 评论 -
用一文来串起attention,transformer,seq2seq的知识点
前两天正沾沾自喜的稍稍看明白点RNN,结果随便搜了一下,比较醒目的关是不是RNN完全可以废弃了?就冒了出来,仔细读来也不是危言耸听,神经网络在序列建模方面,经历了RNN,seq2seq,attention,transformer一系列的进化,现在的情况是RNN(lstm,gru)已经变成了入门玩家的学习基础了。原创 2020-10-14 17:48:57 · 265 阅读 · 0 评论 -
卷积虽好,处理序列还有更好的RNN
学习RNN LSTM,并用一个小例子介绍LSTM参数量如何计算原创 2020-10-09 16:55:13 · 403 阅读 · 1 评论 -
浅析mel滤波的快速计算
浅析mel滤波的快速计算基本计算方法快速计算方法矩阵计算方法迭代计算方法基本计算方法快速计算方法矩阵计算方法迭代计算方法原创 2020-07-09 14:18:01 · 1111 阅读 · 0 评论 -
从一点一滴开始学习了解LDA-Learning Linear Discriminate Analysis from scratch
learning ** from scratch大都翻译为从0开始学叉叉,不过真没见过谁能从0开始学一个比较深的技术或者理论,所以这篇名戏谑一下这个词。接触LDA刚开始就对Discraminiate翻译记不住,是差异、辨别,歧视,为什么选择判别作为汉语呢?这只是一系列疑问的开始,因为刚开始接触这个概念,确实连一知半解都谈不上,只是从别人画原创 2020-06-02 16:22:37 · 267 阅读 · 0 评论