高斯-勒让德积分学习

前言

梯度和辛普森是经典的几何求积分方法,简单易懂,那如果要更加高档(复杂难懂)的求积分方法找哪家了?高斯-勒让德积分当仁不让。举例来说,下面这个公式看着很高档,但真的要用C来实现还真的有些令人头痛。
A = 1 2 ∫ v ∞ e − t t d t \begin{aligned} A=\frac{1}{2}\int_{v}^{\infty}\frac{e^{-t}}{t} {\rm d}t \end{aligned} A=21vtetdt

高斯-勒让德积分

关于勒让德复杂的表征方法暂时不想多做分析学习,暂且记住勒让德多项式 P l ( x ) , l ∈ ( 0 , 1 , . . . ) P_l(x),l\in(0,1,...) Pl(x)l(0,1,...)为本征函数族,正交和完备性可以令其作为广义傅里叶级数的基,即假设函数 f ( x ) f(x) f(x)定义在区间 ( − 1 , 1 ) (-1,1) (1,1)上,则: f ( x ) = ∑ l = 0 ∞ f l P l ( x ) f(x)=\sum_{l=0}^{\infty}f_lP_l(x) f(x)=l=0flPl(x)系数 f l f_l fl f l = 2 l + 1 2 ∫ − 1 1 f ( x ) P l ( x ) d x f_l=\frac{2l+1}{2}\int_{-1}^{1}f(x)P_l(x)dx fl=22l+111f(x)Pl(x)dx
而勒让德多项式的微分表征: P n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n P_n(x)=\frac{1}{2^nn!}\frac{d^n}{dx^n}(x^2-1)^n Pn(x)=2nn!1dxndn(x21)n
看着有点晕,如果展开不同阶数 n n n的多项式,可能会直观一些【5】
在这里插入图片描述
另外【5】还将5阶的多项式画在同一个图上,虽然看不懂,但也挺震撼。

在这里插入图片描述
高斯积分(Gaussion Quadrature)公式如下:
∫ − 1 1 f ( x ) d x ≈ ∑ i = 1 n w i f ( x i ) \int_{-1}^{1}f(x)dx \approx \sum_{i=1}^n w_if(x_i) 11f(x)dxi=1nwif(xi)
即选择一定的插值点和插值权重去逼近积分值。高斯勒让德给出的权重值为【7】
w i = 2 ( 1 − x 2 ) [ P n ′ ( x i ) ] 2 w_i=\frac{2}{(1-x^2)[P_n^\prime(x_i)]^2} wi=(1x2)[Pn(xi)]22
而对应的插值点和低阶权重值已经被算好,可以直接拿来用。

在这里插入图片描述

一般积分区间的归一化

翻译一下wiki的公式:
∫ a b f ( x ) d x = ∫ − 1 1 f ( b − a 2 ξ + a + b 2 ) d x d ξ d ξ ≈ b − a 2 ∑ i = 1 n w i f ( b − a 2 ξ + a + b 2 ) ,   d x d ξ = b − a 2 \int_a^bf(x)dx = \int_{-1}^{1}f(\frac{b-a}{2}\xi+\frac{a+b}{2})\frac{dx}{d\xi}d\xi\\ \approx\frac{b-a}{2}\sum_{i=1}^nw_if(\frac{b-a}{2}\xi+\frac{a+b}{2}),\ \frac{dx}{d\xi}=\frac{b-a}{2} abf(x)dx=11f(2baξ+2a+b)dξdxdξ2bai=1nwif(2baξ+2a+b), dξdx=2ba

Exponential Integral

文章开头的指数积分,也有比较成熟的计算方法: E 1 ( z ) = ∫ z ∞ e − t t d t = − γ − l n   z − ∑ k = 1 ∞ ( − z ) k k k ! E_1(z)=\int_z^\infty\frac{e^{-t}}{t}dt=-\gamma-ln\ z-\sum_{k=1}^\infty\frac{(-z)^k}{kk!} E1(z)=ztetdt=γln zk=1kk!(z)k
更通用的表达,定义 E i n ( z ) = ∫ 0 z ( 1 − e − t ) d t t = ∑ k = 1 ∞ ( − 1 ) k + 1 z k k k ! Ein(z)=\int_0^z(1-e^{-t})\frac{dt}{t}=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}z^k}{kk!} Ein(z)=0z(1et)tdt=k=1kk!(1)k+1zk
那么 E 1 ( z ) = − γ − l n   z + E i n ( z ) E_1(z)=-\gamma-ln\ z+Ein(z) E1(z)=γln z+Ein(z)
第一个参数叫做欧拉常数,从wiki上抄写推导: γ = lim ⁡ n → ∞ ( − l o g   n + ∑ k = 1 n 1 k ) ≈ 0.577215664901532860606512 \gamma=\lim_{n \to \infty}(-log\ n +\sum_{k=1}^n\frac{1}{k})\approx0.577215664901532860606512 γ=nlim(log n+k=1nk1)0.577215664901532860606512

实验

最后用【10】里提供的算法,计算 − E 1 ( z ) -E_1(z) E1(z)的几个积分值:

x=0.05    Ei(x)=-2.4678985
x=0.25    Ei(x)=-1.0442826
x=0.45    Ei(x)=-0.6253313
x=0.65    Ei(x)=-0.4115170
x=0.85    Ei(x)=-0.2840193
x=1.05    Ei(x)=-0.2018728
x=1.25    Ei(x)=-0.1464134
x=1.45    Ei(x)=-0.1077774
x=1.65    Ei(x)=-0.0802476
x=1.85    Ei(x)=-0.0602950

利用python的scipy.specials 库exp1计算的 E 1 ( z ) E_1(z) E1(z)对应值:

>>> exp1(0.05)   2.467898488509974
>>> exp1(0.25)   1.0442826344437384
>>> exp1(0.45)   0.6253313163232692
>>> exp1(0.65)   0.41151697594947967
>>> exp1(0.85)   0.28401926850246173
>>> exp1(1.05)   0.2018728132201966
>>> exp1(1.25)   0.14641337252591016
>>> exp1(1.45)   0.10777743986897659
>>> exp1(1.65)   0.08024762667334323
>>> exp1(1.85)   0.06029496682837346

参考

1.勒让德多项式及性质
2.高斯-勒让德数值积分公式
3.高斯-勒让德求积公式及Matlab实现
4.高斯积分
5.Legendre polynomials from wikipedia
6.6.2(i) Exponential and Logarithmic Integrals
7.Legendre-Gauss Quadrature
8.Exponential Integral from mathworld
9.Exponential integral from wikepedia
10.常用算法程序集(C语言描述)第三版

  • 9
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
高斯滤波是一种常用的图像处理方法,用于平滑图像并减少噪声。下面是一个简单的高斯滤波的C语言代码实现: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> // 定义高斯函数 double gaussian(double x, double sigma) { return exp(-(x * x) / (2 * sigma * sigma)) / (sqrt(2 * M_PI) * sigma); } // 高斯滤波函数 void gaussianFilter(int** image, int width, int height, double sigma) { // 创建一个临时数组用于存储滤波后的图像 int** temp = (int**)malloc(height * sizeof(int*)); for (int i = 0; i < height; i++) { temp[i] = (int*)malloc(width * sizeof(int)); } // 定义高斯核 int kernelSize = 3; double kernel = { {1, 2, 1}, {2, 4, 2}, {1, 2, 1} }; // 对每个像素进行滤波 for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { double sum = 0; double weightSum = 0; // 对每个邻域像素进行加权求和 for (int j = -kernelSize / 2; j <= kernelSize / 2; j++) { for (int i = -kernelSize / 2; i <= kernelSize / 2; i++) { int neighborX = x + i; int neighborY = y + j; // 边界处理 if (neighborX >= 0 && neighborX < width && neighborY >= 0 && neighborY < height) { double weight = kernel[j + kernelSize / 2][i + kernelSize / 2]; sum += image[neighborY][neighborX] * weight; weightSum += weight; } } } // 对滤波后的像素进行归一化处理 temp[y][x] = (int)(sum / weightSum); } } // 将滤波后的图像拷贝回原数组 for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { image[i][j] = temp[i][j]; } } // 释放临时数组的内存 for (int i = 0; i < height; i++) { free(temp[i]); } free(temp); } int main() { // 假设原始图像是一个3x3的灰度图像 int width = 3; int height = 3; int** image = (int**)malloc(height * sizeof(int*)); for (int i = 0; i < height; i++) { image[i] = (int*)malloc(width * sizeof(int)); } // 初始化原始图像 image = 10; image = 20; image = 10; image = 20; image = 40; image = 20; image = 10; image = 20; image = 10; // 执行高斯滤波 double sigma = 1.0; gaussianFilter(image, width, height, sigma); // 输出滤波后的图像 for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { printf("%d ", image[i][j]); } printf("\n"); } // 释放图像数组的内存 for (int i = 0; i < height; i++) { free(image[i]); } free(image); return 0; } ``` 这段代码实现了一个简单的高斯滤波,通过定义高斯核和对每个像素进行加权求和来实现平滑效果。你可以根据需要修改图像的大小、高斯核的大小和标准差来进行实验和调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值