二阶巴特沃兹滤波器的数字推导

二阶巴特沃兹滤波器的数字推导

原型

H ( s ) = Ω c 2 s 2 + 2 ∗ Ω ∗ s + Ω c 2 H(s)=\frac{\Omega_c^2}{s^2+\sqrt{2}*\Omega * s+\Omega_c^2} H(s)=s2+2 Ωs+Ωc2Ωc2

双线性变换+no warpper

Ω c = ω c T \Omega_c = \frac{\omega_c}{T} Ωc=Tωc
带入传递函数得到:
H ( s ) = ( ω c T ) 2 s 2 + 2 ∗ ω c T ∗ s + ( ω c T ) 2 H(s)=\frac{(\frac{\omega_c}{T})^2}{s^2+\sqrt{2}*\frac{\omega_c}{T} * s+(\frac{\omega_c}{T})^2} H(s)=s2+2 Tωcs+(Tωc)2(Tωc)2
带入双线性变换公式: s = 2 T 1 − z − 1 1 + z − 1 和 ω c = 2 π f c f s s =\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}} 和 \omega_c =\frac{2\pi f_c}{f_s} s=T21+z11z1ωc=fs2πfc
得到
H ( s ) = ( 2 π f c f s T ) 2 ( 2 T 1 − z − 1 1 + z − 1 ) 2 + 2 ∗ ( 2 π f c f s ) T ∗ 2 T 1 − z − 1 1 + z − 1 + ( 2 π f c f s T ) 2 H(s)=\frac{(\frac{\frac{2\pi f_c}{f_s}}{T})^2}{(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}})^2+\sqrt{2}*\frac{(\frac{2\pi f_c}{f_s})}{T} * \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}+(\frac{\frac{2\pi f_c}{f_s}}{T})^2} H(s)=(T21+z11z1)2+2 T(fs2πfc)T21+z11z1+(Tfs2πfc)2(Tfs2πfc)2
化简后得到
H ( s ) = ( ( π f c f s ) 2 1 + 2 ∗ π ∗ f c f s + ( π ∗ f c f s ) 2 ) ( 1 + 2 ∗ z − 1 + z − 2 ) 1 + ( π f c f s ) 2 − 2 1 + 2 ∗ π ∗ f c f s + ( π ∗ f c f s ) 2 ∗ z − 1 + 1 − 2 ∗ π ∗ f c f s + ( π ∗ f c f s ) 2 1 + 2 ∗ π ∗ f c f s + ( π ∗ f c f s ) 2 ∗ z − 2 H(s)=\frac{(\frac{(\frac{\pi f_c}{f_s})^2}{1+\frac{\sqrt{2}* \pi *f_c}{f_s}+(\frac{\pi*f_c}{f_s})^2})(1+2*z^{-1}+z^{-2})}{1+\frac{(\frac{\pi f_c}{f_s})^2-2}{1+\frac{\sqrt{2}* \pi *f_c}{f_s}+(\frac{\pi*f_c}{f_s})^2} * z^{-1}+\frac{1-\frac{\sqrt{2}* \pi *f_c}{f_s}+(\frac{\pi*f_c}{f_s})^2}{1+\frac{\sqrt{2}* \pi *f_c}{f_s}+(\frac{\pi*f_c}{f_s})^2}*z^{-2}} H(s)=1+1+fs2 πfc+(fsπfc)2(fsπfc)22z1+1+fs2 πfc+(fsπfc)21fs2 πfc+(fsπfc)2z2(1+fs2 πfc+(fsπfc)2(fsπfc)2)(1+2z1+z2)

双线性变换+warpper

Ω c = 2 T tan ⁡ ω c 2 \Omega_c = \frac{2}{T}\tan{\frac{\omega_c}{2}} Ωc=T2tan2ωc
带入传递函数得到:
H ( s ) = ( 2 T tan ⁡ ω c 2 ) 2 s 2 + 2 ∗ ( 2 T tan ⁡ ω c 2 ) ∗ s + ( 2 T tan ⁡ ω c 2 ) 2 H(s)=\frac{( \frac{2}{T}\tan{\frac{\omega_c}{2}})^2}{s^2+\sqrt{2}*( \frac{2}{T}\tan{\frac{\omega_c}{2}})* s+( \frac{2}{T}\tan{\frac{\omega_c}{2}})^2} H(s)=s2+2 (T2tan2ωc)s+(T2tan2ωc)2(T2tan2ωc)2
带入双线性变换公式: s = 2 T 1 − z − 1 1 + z − 1 和 ω c = 2 π f c f s s =\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}} 和 \omega_c =\frac{2\pi f_c}{f_s} s=T21+z11z1ωc=fs2πfc
得到
H ( s ) = ( 2 T tan ⁡ π f c f s ) 2 ( 2 T 1 − z − 1 1 + z − 1 ) 2 + 2 ∗ ( 2 T tan ⁡ π f c f s ) ∗ 2 T 1 − z − 1 1 + z − 1 + ( 2 T tan ⁡ π f c f s ) 2 H(s)=\frac{(\frac{2}{T}\tan{\frac{\pi f_c}{f_s}} )^2}{(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}})^2+\sqrt{2}*(\frac{2}{T}\tan{\frac{\pi f_c}{f_s}} )* \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}+(\frac{2}{T}\tan{\frac{\pi f_c}{f_s}} )^2} H(s)=(T21+z11z1)2+2 (T2tanfsπfc)T21+z11z1+(T2tanfsπfc)2(T2tanfsπfc)2
化简后得到
H ( s ) = ( ( tan ⁡ π f c f s ) 2 1 + 2 tan ⁡ π ∗ f c f s + ( tan ⁡ π ∗ f c f s ) 2 ) ( 1 + 2 ∗ z − 1 + z − 2 ) 1 + 2 ( tan ⁡ π f c f s ) 2 − 2 1 + 2 tan ⁡ π ∗ f c f s + ( tan ⁡ π ∗ f c f s ) 2 ∗ z − 1 + 1 − 2 tan ⁡ π ∗ f c f s + ( tan ⁡ π ∗ f c f s ) 2 1 + 2 tan ⁡ π ∗ f c f s + ( tan ⁡ π ∗ f c f s ) 2 ∗ z − 2 H(s)=\frac{(\frac{(\tan{\frac{\pi f_c}{f_s}})^2}{1+\sqrt{2}\tan{\frac{ \pi *f_c}{f_s}}+(\tan{\frac{\pi*f_c}{f_s}})^2})(1+2*z^{-1}+z^{-2})}{1+\frac{2(\tan{\frac{\pi f_c}{f_s}})^2-2}{1+\sqrt{2}\tan{\frac{ \pi *f_c}{f_s}}+(\tan{\frac{\pi*f_c}{f_s}})^2} * z^{-1}+\frac{1-\sqrt{2}\tan{\frac{ \pi *f_c}{f_s}}+(\tan{\frac{\pi*f_c}{f_s}})^2}{1+\sqrt{2}\tan{\frac{ \pi *f_c}{f_s}}+(\tan{\frac{\pi*f_c}{f_s}})^2}*z^{-2}} H(s)=1+1+2 tanfsπfc+(tanfsπfc)22(tanfsπfc)22z1+1+2 tanfsπfc+(tanfsπfc)212 tanfsπfc+(tanfsπfc)2z2(1+2 tanfsπfc+(tanfsπfc)2(tanfsπfc)2)(1+2z1+z2)

或者

H ( s ) = 1 s 2 + 1.414 ∗ s + 1 H(s)=\frac{1}{s^2+1.414* s+1} H(s)=s2+1.414s+11
这个连接\二阶巴特沃斯双极点低通滤波器设计详细总结有个推导,结果应该是一样的,那就这样吧。为了验证这个算法的准确性,从scipy中生成同样采样率、截止频率的参数,发现除了a1都一样(a/b本文推导,aa/bb是二阶巴特沃斯双极点低通滤波器设计详细总结结果,aaa/bbb是scipy的结果),不知道scipy是怎么算的a1。
在这里插入图片描述

参考

二阶巴特沃斯双极点低通滤波器设计详细总结
巴特沃斯滤波器详解

  • 16
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
巴特沃兹滤波器是一种常见的电子滤波器,它能够对信号进行滤波处理。在Multisim软件中,我们可以利用其仿真功能来模拟巴特沃兹滤波器的性能。 首先,我们需要打开Multisim软件,并创建一个新的电路设计。然后,在“Components”面板上选择“Passive”选项,将所需的电阻和电容组件拖放到工作区中。根据巴特沃兹滤波器的设计,需要选择适当的电阻和电容值来构建电路。 接下来,在“Components”面板上选择“波形发生器”选项,并将其连接到电路的输入端口上。通过波形发生器,我们可以输入所需的信号以进行滤波器的仿真。 然后,在“Components”面板上选择“滤波器”选项,并选择“巴特沃兹滤波器”的类型。根据实际需求,选择所需的滤波器类型和参数。与巴特沃兹滤波器相关的参数包括阶数、截止频率和通带衰减。 完成滤波器的设置后,我们需要将滤波器与电阻和电容组件连接起来,并将输出接口连接到示波器上。示波器可以用来显示输出信号的波形和频谱特性,以便我们可以对滤波器进行分析和评估。 最后,我们可以通过点击Multisim软件的仿真按钮来运行巴特沃兹滤波器的仿真。仿真过程将模拟信号经过滤波器后的输出结果,并提供信号的波形和频谱信息。 通过Multisim仿真,我们可以评估巴特沃兹滤波器的性能,包括滤波效果、频率响应和信号失真情况等。这种仿真方法可以帮助工程师和学生更好地理解和应用巴特沃兹滤波器,同时也提供了更方便和快捷的设计和测试工具。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值