噪声消除
文章平均质量分 94
西岸行者
问君能有几多愁,恰似一只鸡腿进不了口
展开
-
高斯-勒让德积分学习
高斯-勒让德积分求解函数积分前言高斯-勒让德积分参考前言梯度和辛普森是经典的几何求积分方法,简单易懂,那如果要更加高档(复杂难懂)的求积分方法找哪家了?高斯-勒让德积分当仁不让。举例来说,下面这个公式看着很高档,但真的要用C来实现还真的有些令人头痛。Ak^=ξk1+ξkexp{12∫vk∞e−ttdt}Rk\begin{aligned}\hat{A_k}&=\frac{{\xi_k}}{1+\xi_k}exp \Big \{ \frac{1}{2}\int_{v_k}^{\infty}\原创 2021-11-03 15:23:12 · 7463 阅读 · 0 评论 -
对比IMCRA来研究一下Cohen的TBRR跟踪方法
对比IMCRA来研究一下Cohen的TBRR跟踪方法前言MCRA1vs2-信噪比门限得出的语音存在概率IMCRA vs TBRR-的语音存在概率计算:IMCRA的语音不存在算法TBRR的语音存在概率后记参考文献前言科恩大神的巅峰之作MCRA是菜鸟容易看懂的一个算法,但不妨碍它成为经典噪声跟踪的天花板,他再接再厉提出了Improved版本和TBRR版本的MCRA,罗爱洲也在专著中改进了一版号称MCRA-2。但这么多烟花缭乱的改进本质上改的是啥呢?答案是语音存在概率!MCRA1vs2-信噪比门限得出的原创 2021-10-21 14:53:27 · 1983 阅读 · 0 评论 -
通过实例学习理解HMM建模
通过实例学习理解HMM建模例子1-什么是马尔科夫过程Markov process-马尔科夫过程Observable-State Markov Process-显式马尔科夫过程Hidden-State Markov Process-隐式马尔科夫过程小结例子2-Markov Chains 马尔科夫链ergodic Markov chains-遍历型left–right Markov chains-左右型(因果型)怎么理解HMMHMM的基本元素S-模型中状态的有限集合O-模型输出的观测值符号信合A-状态转移概率矩原创 2021-08-13 17:29:26 · 669 阅读 · 0 评论 -
FxLMS Filter学习笔记
FxLMS Filter学习笔记前言循序渐进的了解主动降噪主动降噪的核心算法FxLMS Filter参考文档前言当前耳机中的主动降噪技术中,有FxLMS的一席之地,本文根据参考文档整理学习笔记,理解一下主动降噪和FxLMS技术。循序渐进的了解主动降噪在【7】的文章中,贴出了索尼公司耳机为主动降噪设计的双mic结构,下图引用一下:很容易理解为了主动降噪,在耳机的外层利用mic采集环境噪音,作为自适应滤波的参考信号,帮助完成降噪的目的,那为什么在喇叭附近也放置一个mic呢?它的目的是什么?其实如图中原创 2021-07-28 17:22:46 · 3344 阅读 · 1 评论 -
ANC 与 adaptive filter
ANC 与 adaptive filter前言 NC/NS/NR都是降噪二级目录参考文献前言 NC/NS/NR都是降噪cancellation、suppression和reduction都是降低noise的影响,ANC的概念从adaptive noise cancellation变成active noise cancellation,本质上却也都离不开adaptive filter的理论。引用【3】文的框图,典型的LMS自适应滤波如下:图中上半部为典型的anc自适应降噪模型,第二个叫做ALE自适应线原创 2021-07-26 16:56:05 · 1030 阅读 · 0 评论 -
统计模型和贝叶斯方法在对数功率谱域的噪声鲁棒性应用
统计模型和贝叶斯方法在对数功率谱域的噪声鲁棒性应用统计模型和贝叶斯方法贝叶斯估计MAP最大后验概率和ML最大似然估计EM方法估计GMM的参数对数功率谱域的降噪范式参考文档统计模型和贝叶斯方法语音增强的问题是离不开统计模型框架的,即从一组未知参数的观察值,找出未知参数的估计器。这些估计器最具代表的是最大似然ML和最大后验MAP两种方法,MAP被认为是bayesian估计器是没有异议的,但【1】中认为ML属于假设一组未知但确定的参数θ\thetaθ,通过观察值yyy来寻找是p(y;θ)p(y;\theta)原创 2021-06-29 15:30:17 · 282 阅读 · 0 评论 -
泰勒级数在语音增强中的应用
原来泰勒级数也能被拿来做语音增强扫盲=前言泰勒级数定义泰勒级数扩展多变量泰勒级数多变量矢量函数的泰勒展开应用方向VTS在变换域的鲁棒性应用环境建模参考文档扫盲=前言这些储备知识有的忘记了,有的就没学过,还要从头慢慢来学泰勒级数定义【摘抄百度】泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)的名字来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,无限项连加式(级数)来表示一个函数,这些相加的项由函数在某一点的导数求得。说到此其实跟原创 2021-06-24 16:22:13 · 678 阅读 · 0 评论 -
OMLSA&IMCRA学习笔记
这两个搭配好像这个是经典算法的集大成者。首先回忆一下MMSE-LSA的经典公式如下Ak^=ξk1+ξkexp{12∫vk∞e−ttdt}Rk\begin{aligned}\hat{A_k}&=\frac{{\xi_k}}{1+\xi_k}exp \Big \{ \frac{1}{2}\int_{v_k}^{\infty}\frac{e^{-t}}{t} {\rm d}t\Big \}R_k\end{aligned}Ak^=1+ξkξkexp{21∫vk∞te−tdt}原创 2021-06-10 10:36:19 · 2655 阅读 · 2 评论 -
阅读理解:Yariv.E的MMSE方法
阅读理解:Yariv.E的MMSE方法致敬Yariv.Ephraim,重温MMSE都是MMSE,Yariv的和Wiener的有何不同MMSE-Minimum Mean-square ErrorMMSE-STSA EstimatorMMSE-LSA Estimator参考文献致敬Yariv.Ephraim,重温MMSEYariv.Ephraim翻译成中文应该叫亚力夫.伊弗雷姆,毕业于海法的以色列工业大学,博士论文的核心就是MMSE,即谱减法、维纳滤波的基础上,为频域降噪算法奠定了另一个发展领域,翻越他的研原创 2021-04-27 18:05:01 · 457 阅读 · 0 评论 -
除了信噪比SNR,还有哪些指标评价降噪语音的水平
除了信噪比SNR,还有哪些指标评价降噪语音的水平主观subjective和客观objectiveMOS:Mean Opinion ScoreCSIG: MOS predictor of speech distortion,CBAK: MOS predictor of intrusiveness of background noiseCOVL: MOS predictor of overall processed speech quality.ITU-T RecommendationsPESQ : Perce原创 2021-04-19 17:13:16 · 8423 阅读 · 0 评论 -
从MIXMAX概率模型理解Bayesian建模方法
MIXMAX 概率模型理解储备知识HMM-隐马尔可夫模型(Hidden Markov Model)GMM-混合高斯模型多元高斯分布(The Multivariate normal distribution)多元高斯还是混合高斯Bayesian概率模型储备知识HMM-隐马尔可夫模型(Hidden Markov Model)HMM建模时需要目标有这两个特征:基于序列的,比如时间序列,或者状态序列。有两类数据,一类序列数据是可以观测到的,即观测序列;而另一类数据是不能观察到的,即隐藏状态序列,简称状态原创 2021-04-14 14:49:07 · 391 阅读 · 0 评论 -
频域噪声模型估计的话音增强方法
传统的噪声谱密度估计理论并没有随着神经网络的出现而衰退,因为经典的算法模型大大降低了运算速度,而将比较难搞的(估算)参数交给神经网络后,模型实现起来更简单实惠,所以有必要对此做一个回顾学习。原创 2021-04-07 17:34:34 · 1075 阅读 · 1 评论 -
利用LateX让拉丁字母和希腊字母变成数学符号
现代数学(物理化学生物学等)方法离不开拉丁(罗马)字母和希腊字母。但是拉丁字母(英文)只有26个,希腊字母只有24个,远远不够用,所以数学家们发明了各种字母的变种(X战警字母)来表达他们与众不同的领域,我上大学那会儿互联网不是很发达,各位数学老师的手写体真的是眼花缭乱,而今白LateX工具所赐,可以回顾一下这些变种字母是怎么被数学家玩坏的了。也为了以后遇到数学字母到这里来查询对照,省的一时雾水。原创 2021-03-26 18:32:16 · 5608 阅读 · 0 评论 -
阵列信号处理笔记-波达方向DOA-子空间方法
阵列信号处理-波达方向DOA前言MUSIC和ESPRIT三级目录参考文献前言波达方向-Direction Of Arrival是研究波束形成的重要课题,引用之前的老图,DOA要估算出来的就是两个角度:俯仰角φ\varphiφ和方位角θ\thetaθ,而如果是全向麦克风组成的线性阵列(z轴),那么方位角就可以省略了,只研究俯仰角就可以了,所以很多算法简化假设条件,然而实际中无法省略,不过可以通过阵列的摆放,设计的估算角度范围小一些,算法也会容易一些。经典的DOA估算方法有波束形成测向方法(base),原创 2021-03-19 10:26:40 · 6729 阅读 · 1 评论 -
webrtc中的噪声抑制之四:语音噪声概率计算
webrtc中的噪声抑制之四:语音噪声概率计算回顾webrtc的噪声抑制,通过quantile方法初始估计出噪声,然后利用DD方法估算出先验和后验信噪比,然后根据此计算LRT均值特征,同时结合频谱平坦度和频谱差异,计算得出当前帧语音噪声概率,完成最终的噪声估计和维纳滤波。此前就维纳滤波和噪声估计做了学习研究,本文记录对语音噪声概率估计的研究方法。ML-Maximum Likelihood分...原创 2019-06-18 13:57:03 · 2948 阅读 · 0 评论 -
webrtc中的噪声抑制之三:基于信号存在概率的递归平均噪声估计
webrtc中的噪声抑制之三:基于信号存在概率的递归平均噪声估计承上启下上文学习了webrtc中利用当前帧经过STFT得到频率幅值,结合quantile算法,先进行一轮初始噪声估计,但这还没完,接下来利用这个估计的噪声和频率幅值带入到ComputeSnr中,计算先验信噪比和后验信噪比,1.先验信噪比估计值是通过前一帧保存的幅值(未去噪)和最终的噪声估计值,在乘以一个平滑因子得到的,平滑因子是...原创 2019-06-13 18:18:04 · 1812 阅读 · 1 评论 -
webrtc中的噪声抑制之二:噪声估计QBNE
webrtc中的噪声抑制之二:噪声估计模型前言上一篇学习研究了频域维纳滤波的基本原理,得出两个信噪比计算是实现精准的噪声抑制的前提,那么本篇继续学习研究噪声估计是如何在WebRtc实现的,以及据此而得出的先验信噪比和后验信噪比。噪声估计使用维纳滤波进行语音降噪的过程,其实是把降噪过程视为一个线性时不变系统,当带噪语音通过这个系统时,在均方误差最小化准则下,使得系统的输出与期望的纯净语音信号...原创 2019-06-12 17:08:25 · 4385 阅读 · 2 评论 -
webrtc中的噪声抑制之一:频域维纳滤波
webrtc中的噪声抑制之一:频域维纳滤波前言在开源的噪声抑制算法中,webrtc ns是很有名的,社区里也有很多分享的文章,但要么深要么浅,还有一些误导读者的,所以趁着移植项目的机会,从盲人摸象到庖丁解牛的学习一番这里面的算法原理和工程实现。WebRtc Ns模块采用的是频域维纳滤波的方法,结合VAD检测得到前验信噪比和后验信噪比,算出频域维纳滤波器的系数,在频域实现了噪声的滤除。该模块有...原创 2019-05-30 15:11:11 · 6515 阅读 · 6 评论