U-Net论文解析


前言

文章摘要部分的说明:
(1)利用少量数据集完成了训练(利用了数据增强的技术)
(2)通过一个压缩路径一个扩展路径构成了一个U-Net,前者用来捕获上下文,后者用来精确定位。
(3)成果:在2015年的ISBI挑战赛上获得了冠军(电子显微细胞分割)

一、介绍部分解读

(1)问题:深度学习网络会由于数据集的限制和网络的规模限制而无法训练——Krizhevsky训练了一个八层的神经网络含有百万个参数/ImageNet的出现得到解决
(2)相比较于分类问题,医学图片分割:输出需要包含每个像素的位置
——Ciresan训练了一个网络利用滑动窗口来提供附近位置的数据进而训练

优点:该网络实现了定位,同时很好的扩充了数据集
缺点:运行慢,因为每个patch单独运行,同时patch有大量的重叠部分;
在定位精度上和上下文的使用上需要进行权衡

(3)针对上述问题,提出了新的网络——全卷积网络(该网络架构为突破点1 )
网络优势:只使用少数的图片就可以进行精准的分割
在这里插入图片描述其中左半部分为压缩路径,右半部分为扩展路径。
1.对于前面的网络的缺点(1)其通过一个镜像复制的方式,将网络再次放到了右边,这样可以增加了分辨率,防止上采样过程中数据的丢失。
2.左边的网络基本上是两次卷积一次max pool,然后feature map的数量也不断扩增为之前的一倍。这个过程进行了特征的提取
3.然后到右边网络不断上采样,上采样后先和左边的镜像复制合并,再进行两次卷积,到最上层,最后通过一个1*1的卷积进行输出。

优势:

  1. 无全连接层
  2. 镜像拼接很好的处理了边缘问题
  3. 上采样部分通过特征通道到高分辨层

(4)数据增强:最重要的是应用随机的弹性变换,这部分后面会再次说明

(5)对于损失进行加权:强化对紧密连接的细胞的学习

二、网络架构

1.基本构成

压缩路径和扩展路径
在这里插入图片描述

2.压缩路径

(1)对于网络的左半部分,每一层由连续的两个3*3的卷积核进行卷积(无padding)
(2)卷积后经过relu层,然后经过maxpooling(stride=2)
上面的一次操作可以理解为一次下采样,同时会加倍feature map

3.扩展路径

(1)先用2* 2的卷积核进行上采样,这样减半了feature channels
(2)然后是两个3* 3的卷积核,伴随着一个relu
(3)重点:伴随着一个从同层的压缩路径传来的镜像复制:这样很好的弥补了边界损失
(4)选取输入为576*576的原因是,可以让每一层maxpooling都是对于偶数层进行操作的,这样就减少了边缘损失

三、训练

  1. 选取大的输入块,小的batchsize,好处是可以减少开销,同时更加充分的利用GPU

  2. 采取高惯性m=0.99保证前面的层数会直接影响到后面的层级

  3. Energy function:
    在这里插入图片描述现在像素级上使用了softmax,之后又通过cross entropy function进行了损失计算

  4. 对于像素级进行了加权,通过预估计的方式,用来补偿对于不同像素点学习频率不同的情况,这样保证了对于边界的学习。
    在这里插入图片描述计算公式如下,其中w0初始化为10 ,σ ≈ 5 pixels.

  5. 初始化权重:选取高斯分布,标准差为sqrt(2/N)的分布中提取。其中本U-Net的N为3* 3 * 64 = 576

4.数据增强

  1. 平移、旋转
  2. 灰度变化
  3. 随机弹性变化:在3*3网络上随机(选取高斯分布中 标准差为10pixels)位移向量生成光滑的变形,每个像素层使用双三次插值来进行变化
  4. 收缩层末端:使用dropout

四、应用

(1)电子显微镜下的神经元结构分割:
数据集:30张图片
结果:2015的ISBI中拿下第一,其Warping Error达到第一

以下参考了https://zhuanlan.zhihu.com/p/128539526
在这里插入图片描述在这里插入图片描述pixel error 则是根据每个像素位置计算分类错误的数量。

pixel error过于敏感,会考虑所有分割细节,warping error 和 Rand error则相对缓和,更倾向于形态和整体的分割质量,在生物医学图像分割上是较为合理的评价指标。

(2)在细胞分类光显微图像中,在PhC-U373数据中和DIC-HeLa的平均IorU都有不错的表现。

五、研究思路分析

1.要解决的问题

医学上的细胞分割(本质是图像分割问题)

2.面对问题

(1)如何解决使用少的训练数据完成训练
(2)如何尽可能的提高精度问题,这也带来了如何处理边缘的问题

3.操作

(1)对于问题1,其很关键的一点是利用了数据加强,除了一些常规操作,作者认为随机弹性变化起到了很重要的作用
(2)对于精度问题,首先是边缘问题,U-Net的构建利用镜像的一种copy,既保证了边缘数据不丢失,同时又利用下采样的过程保留了特征。并且对于边缘问题其还采用了一种加权的方式进行了处理。
(3)构建好网络,紧接着训练的时候做了一些处理,这在第三部分都有所陈述。
(4)最后是实验的成果分析:其采用了四个指标,分别是wraping error、rand error 和pixel error 以及IOU四个指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值