摘要
分割网络。本文介绍了一种从稀疏标注的体积图像中学习的体积我们概述了该方法的两个有吸引力的用例:(1)在半自动设置中,用户注释要分割的卷中的一些切片。
该网络从这些稀疏注释中学习,并提供密集的3D分割。(2)在全自动设置中,我们假设存在一个有代表性的、稀疏注释的训练集。在此数据集上训练,网络密集分割新的体积图像。该网络扩展了Ronneberger等人提出的u-net架构,将所有2D操作替换为3D操作。该实现在训练期间执行动态弹性变形以实现有效的数据增强。它是从头开始端到端训练的,也就是说,不需要预先训练的网络。我们在复杂的、高度可变的3D结构——爪蟾肾脏上测试了所提出方法的性能,并在两种用例中都取得了良好的结果。
关键词:卷积神经网络,3D,生物医学体积图像分割,非洲爪蟾肾脏,半自动,全自动,稀疏标注
1 介绍
在生物医学数据分析中,体积数据非常丰富。用分割标签标注这些数据会带来困难,因为计算机屏幕上只能显示二维切片。因此,以逐片的方式对大容量的数据进行注释是非常繁琐的。它的效率也很低,因为相邻的切片显示的信息几乎相同。特别是对于需要大量注释数据的基于学习的方法,对3D体进行完全注释并不是创建大型丰富的训练数据集的有效方法。
在本文中,我们提出了一种学习生成密集体积分割的深度网络,但只需要一些带注释的二维切片进行训练。
该网络可以以两种不同的方式使用,如图1所示:第一个应用案例仅针对稀疏注释数据集的致密化;第二种方法是从多个稀疏注释的数据集中学习,以泛化到新数据。这两种情况都高度相关。
该网络基于之前的u-net架构,由一个收缩的编码器部分分析整个图像和一个连续扩展的解码器部分产生全分辨率分割[11]。虽然u-net完全是2D架构,但本文提出的网络以3D体作为输入,并使用相应的3D操作(特别是3D卷积、3D最大池化和3D上卷积层)对其进行处理。此外,我们避免了网络架构中的瓶颈[13],并使用批处理规范化[4]来加快收敛速度。
在许多生物医学应用中,只需要很少的图像就可以训练一个泛化得相当好的网络。这是因为每张图像已经包含了具有相应变化的重复结构。在体积图像中,这种效果更加明显,因此我们可以只在两张体积图像上训练网络,以便推广到第三张图像。加权损失函数和特殊的数据增强使我们能够仅使用少量手动注释的切片,即从稀疏注释的训练数据中训练网络。
我们展示了所提出的方法在非洲爪蟾肾脏的难共聚焦显微数据集上的成功应用。在其发育过程中,爪蟾肾脏形成了一个复杂的结构[7],这限制了预定义参数模型的适用性。首先,我们提供了定性的结果来证明少数注释切片的致密化质量