什么是决策树算法

1.1、什么是决策树

    咱们直接切入正题。所谓决策树,顾名思义,是一种树,一种依托于策略抉择而建立起来的树。

    机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。
    从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树。

    来理论的太过抽象,下面举两个浅显易懂的例子:

第一个例子

    套用俗语,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:

      女儿:多大年纪了?
      母亲:26。
      女儿:长的帅不帅?
      母亲:挺帅的。
      女儿:收入高不?
      母亲:不算很高,中等情况。
      女儿:是公务员不?
      母亲:是,在税务局上班呢。
      女儿:那好,我去见见。

      这个女孩的决策过程就是典型的分类树决策。相当于通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑:

    也就是说,决策树的简单策略就是,好比公司招聘面试过程中筛选一个人的简历,如果你的条件相当好比如说某985/211重点大学博士毕业,那么二话不说,直接叫过来面试,如果非重点大学毕业,但实际项目经验丰富,那么也要考虑叫过来面试一下,即所谓具体情况具体分析、决策。

第二个例子

    此例子来自Tom M.Mitchell著的机器学习一书:

    小王的目的是通过下周天气预报寻找什么时候人们会打高尔夫,他了解到人们决定是否打球的原因最主要取决于天气情况。而天气状况有晴,云和雨;气温用华氏温度表示;相对湿度用百分比;还有有无风。如此,我们便可以构造一棵决策树,如下(根据天气这个分类决策这天是否合适打网球):

    上述决策树对应于以下表达式:

(Outlook=Sunny ^Humidity<=70)V (Outlook = Overcast)V (Outlook=Rain ^ Wind=Weak)

转载:http://blog.csdn.net/v_july_v/article/details/7577684

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页