利用np.sum计算准确度的坑

这篇博客探讨了在使用numpy的`np.sum`函数时,确保输入数组`y`和`y_predict`形状一致的重要性。如果它们的形状不匹配,例如一个为(n,)而另一个为(n,1),会导致矩阵运算的广播错误,产生不正确的结果,而非引发错误。作者强调了正确匹配形状以避免意外数值计算的关键性。
摘要由CSDN通过智能技术生成

np.sum(y == y_predict) 其中y和y_predict必须是同一个shape,要么都是(n,) , 要么都是(n, 1),**千万不要是一个是(n,),另外一个是(n,1),不然计算出的结果会非常大,因为这时候会自动广播成两个矩阵相减了!**这里不会报错的哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值