不再是个孩子喵小姐
码龄7年
求更新 关注
提问 私信
  • 博客:19,106
    19,106
    总访问量
  • 15
    原创
  • 15
    粉丝
  • 32
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2018-01-19
博客简介:

weixin_41650458的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得16次评论
  • 获得53次收藏
创作历程
  • 1篇
    2019年
  • 14篇
    2018年
成就勋章
TA的专栏
  • python
    3篇
  • Deep Learning
  • NLP
    1篇
  • tensorflow
    4篇
  • Machine Learning
    2篇
  • Java Coding
    3篇
  • Paper Reading
    1篇
  • configuration
    1篇

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

英文事件抽取论文整理

  不知不觉,研究英文事件抽取两年了,是时候将看过的paper做一个总结了  目前事件抽取仍然集中于基于表示的神经网络方法,但基于特征的方法仍然值得去领悟,因此我主要按这两个类别进行分类:  基于特征的方法  2006_ACL_The Stages of Event Extraction  2008_ACL_Refining Event Extractionthrough Cross-...
原创
发布博客 2019.02.21 ·
2442 阅读 ·
2 点赞 ·
6 评论 ·
12 收藏

错误:ImportError:No module named 'sklearn.model_selection‘

                            无论怎样,都不要忘记微笑!愿你成为自己的太阳,无须借助谁的光!刚开始,对于神经网络这个黑匣子,一直保持不认可,不接受的态度,而这一切的根源就在于它的可解释性太差,你搞不懂它为什么实验性能好?而神经网络实验性能的好坏又与参数有着很大的关系,此时,调参成为了重中之重,感觉有点舍本逐末的意思!调参大家普遍采用grid search算法,之前...
原创
发布博客 2018.11.12 ·
1186 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

JAVA安装与环境配置

一份耕耘,一份收获;不要在该奋斗的年纪选择安逸!一、安装eclipse 1)在网页搜索‘eclipse’,选择官网下载: 2)下载好后,双击‘eclipse’应用程序,由于没有安装JRE或JDK,此时会报错:   二、安装jdk(链接为:https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-213...
原创
发布博客 2018.10.23 ·
303 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

腾讯2018春招技术类编程题3

既然不能解决眼前的苟且,就先把诗和远方放一放!加油吧,我的喵小姐!3、贪吃的小Q审题:1)每天至少吃一块巧克力,所以第一天最多吃M-(N-1);2)从M-(N-1)开始遍历,找到满足条件的吃法。 import java.util.Scanner;public class Main { public static void main(String[] args) { ...
原创
发布博客 2018.10.14 ·
263 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

论文阅读之2018_COLING_Enhancing Sentence Embedding with Generalized Pooling

作者:Qian Chen - University of Science and Technology of China           Zhen-Hua Ling - University of Science and Technology of China           Xiaodan Zhu - ECE, Queen’s University任务:自然语言推理—判断前提和假...
原创
发布博客 2018.09.20 ·
803 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

腾讯2018春招技术类编程题2

   既然不能解决眼前的苟且,就先把诗和远方放一放!加油吧,我的喵小姐!2、纸牌游戏首先认真看题:1)时间限制为1s,不适合用循环;2)双方均最优-即如果是按从大到小的顺序排下来,则应该是一正一负依次加起来即可。所以现在问题的关键就是如何使输入的数据有序?此时,我首先想到的是各种排序方法,但是它们均用到了循环,时间上肯定不满足,而且依我自己的直觉,总觉得不能使用内置的排序函数,所以尽管...
原创
发布博客 2018.09.16 ·
351 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

腾讯2018春招技术类编程题1

     编程的时候一直没养成好的习惯,拿住题想都不想就开始coding,但是这样往往会想当然,希望自己在之后的每周练习中能够养成良好的编程习惯!——记住:拿到题,先思考,尽可能考虑全面,而不是着急火燎的去编码,思考作为coding的前奏,才能事半功倍(作为一个编程小菜鸟,希望能慢慢提升自己编码时候的思维能力,以前我总是喜欢说:“我不喜欢计算机,但是很无奈我本科学了它,研究生还在学它”!今天我告诉...
原创
发布博客 2018.09.16 ·
348 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python中的内置函数---zip()

形式:zip(*iterables)参数解释:iterables---迭代器:可以是内建的迭代器,比如:字符串、列表、元组、字典、集合等,也可以是用户定义的迭代器,其中需要包含__iter__()方法返回值:返回一个由元组组成的对象,以下说的都是经过list()之后的列表形式。             1)如果没有参数,将返回一个空的迭代器;             2)如果只有一个参数,...
原创
发布博客 2018.09.12 ·
297 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习之分类问题的评估指标2---准确率、精确率、召回率以及F1值

本节主要了解一下sklearn.metrics下计算准确率、精确率、召回率和F1值的函数以及对于多分类问题计算时的理解1、sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)normalize:bool型值,默认为True;如果为False,则表示正确分类的样本数2、klearn...
原创
发布博客 2018.09.09 ·
3177 阅读 ·
1 点赞 ·
1 评论 ·
8 收藏

机器学习之分类问题的评估指标1---准确率、精确率、召回率以及F1值

  Relevant NonRelevant Retrived True Positive(TP) False Positive(FP) Not Retrived False Negative(FN) True Negative(TN)...
原创
发布博客 2018.09.09 ·
4192 阅读 ·
4 点赞 ·
2 评论 ·
18 收藏

Tensorflow函数学习笔记3---tf.nn.dropout

下面列出的是源码部分:tf.nn.dropout(x, #一个tensorkeep_prob, #决定每个元素被保留的概率,(0,1]noise_shape=None, #暂留问题seed=None, name=None){ ...... noise_shape = _get_noise_shape(x, noise_shape)#若noise_shape保留...
原创
发布博客 2018.09.08 ·
333 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Tensorflow函数学习笔记2---tf.multipy和tf.matmul

1、multiply(x,y,name=None)—实现元素级别的相乘 1)注意:x与y要有相同的数据类型,要是int都是int,要是float都是float,否则会因为数据类型不匹配而报错,看下面例子:x=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])y=tf.constant([[0,0,1],[0,0,1],[0,...
原创
发布博客 2018.09.08 ·
2329 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Python中的字典排序操作---sorted

sorted(iterable,key,reverse)参数解释:1)iterable:一个可以迭代的对象,通常为d.items()或者d.keys(),前者代表返回的列表元素里键和值都存在,而后者返回的列表元素中则只有键;2)key:一个函数,用来选取参与比较的元素,这里一般采用lambda e:e[0]形式,这是代表按键排序,若改为e[1],则表示按值排序;3)reverse:若为Tr...
原创
发布博客 2018.09.07 ·
378 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

Tensorflow函数学习笔记1---tf.reduce_mean

tf.reduce_mean(#沿着axis维度求平均    input_tensor,#输入    axis=None,#表示在哪个维度进行sum操作。     keep_dims=False,#当值为False时,相当于执行完后原始数据就会减少一个维度;而为True时,表示要保留原始数据的维度。    name=None,    reduction_indices=None,#axi...
原创
发布博客 2018.09.07 ·
1396 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

Python报错记录1---TypeError

return [vocabulary.get(w, UNK_ID) for w in words if len(words) <= 80 and len(words) >= 8] 这句代码是没有错的,但是除了以上我还想考虑一下len(words)>80的情况,所以我改成了下面: if len(words) >= 4 and len(words) <=...
原创
发布博客 2018.09.06 ·
264 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多