GoodShot的专栏

追赶,超越

如何理解np.sum tf.reduce_sum( tf.reduce_max tf.reduce_mean)等对tensor和高维矩阵的axis选择的操作

一个不是很简单,但是很好理解的方法是:你的输入矩阵的shape是(2,2,4),那么当axis=0时,就是在第一个dimension上进行求和,最后得到的结果的shape就是去掉第一个dimension后的shape,也就是(2,4)。具体的计算方法则是,对于c[i,j,k],假设输出矩阵为s[j...

2018-03-27 11:00:18

阅读数 1127

评论数 0

有关l2,1范数作用的理解--正则化项作用,不同于l1范数(矩阵元素绝对值之和)的稀疏要求,l21范数还要求行稀疏

今天和导师讨论问题的时候,说到了l21范数。导数希望我能解释一下,我明白它的作用可是我知道我没有向老师解释清楚,有些失落。今晚就自己总结一下吧,希望下次再有人问我这个问题的时候我能向别人解释清楚。先看上面l21范数的定义,注意原始矩阵是n行t列的,根号下平方是对列求和,也就是说是在同一行中进行操作...

2018-03-27 10:11:09

阅读数 2711

评论数 2

常见向量范数和矩阵范数

1、向量范数1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。∞-范数:,即所有向量元素绝对值中的最大值,matlab调用函数nor...

2018-03-27 09:51:45

阅读数 231

评论数 0

如何理解张量tensor

1 关于张量的四种定义“张量”在不同的运用场景下有不同的定义。第一个定义,张量是多维数组,这个定义常见于各种人工智能软件。听起来还好理解。--本文仅解释此种2 多维数组从第一个定义:张量是多维数组开始。现在机器学习很火,知名开源框架tensor-flow是这么定义tensor(张量)的:A ten...

2018-03-26 12:58:13

阅读数 353

评论数 0

Tensorflow CNN(两层卷积+全连接+softmax)

由于卷积用于分类的方法非常固定,因此直接贴上源码以及链接,有需要的直接稍加修改就可以了。 传送门 简单写一下心得体会 卷积层+pooling层#定义变量,初始化为截断正态分布的变量 def weight_variable(shape): initial = tf.truncated_nor...

2018-03-24 23:57:37

阅读数 1323

评论数 0

TensorFlow 基本使用

本文结合以下文章理解最好:https://wenku.baidu.com/view/f09546d4dc88d0d233d4b14e852458fb770b38ef.html使用TensorFlow,你必须明白TensorFlow:使用图(graph)来表示任务被称之为会话(Session)的上下...

2018-03-24 14:54:14

阅读数 209

评论数 0

tf.nn.conv2d理解(带通道的卷积图片输出案例)

三篇参考:1.https://blog.csdn.net/goodshot/article/details/79655915 TF-卷积函数 tf.nn.conv2d 介绍2.https://blog.csdn.net/goodshot/article/details/79677758  tf.n...

2018-03-24 14:38:13

阅读数 2515

评论数 0

彻底搞懂CNN

之前通过各种博客视频学习CNN,总是对参数啊原理啊什么的懵懵懂懂。。这次上课终于弄明白了,O(∩_∩)O~上世纪科学家们发现了几个视觉神经特点,视神经具有局部感受野,一整张图的识别由多个局部识别点构成;不同神经元对不同形状有识别能力,且视神经具有叠加能力,高层复杂的图案可以由低层简单线条组成。之后...

2018-03-22 20:53:16

阅读数 242

评论数 0

TF-卷积函数 tf.nn.conv2d 介绍

tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name...

2018-03-22 16:29:50

阅读数 273

评论数 0

1. 根据输出的数据,对各个阶维度的反推+2.tf中生成根据指定的shape,tensor的各个阶的维度判断

方法:从最内部的不能分解元素观看,确定包括在最里面[]的个数,作为最后的一级的阶的维度,再以该[]为级别,数出同级的包括在另外一个[]之内的作为倒数第二阶的维度,依此类推,直到最后一级最为外层的[]结束。input=tf.random_normal([2, 3, 3, 5]) sess=tf.S...

2018-03-22 15:31:11

阅读数 352

评论数 0

【TensorFlow】tf.nn.conv2d是怎样实现卷积的?

三篇参考:1.https://blog.csdn.net/goodshot/article/details/79655915 TF-卷积函数 tf.nn.conv2d 介绍2.https://blog.csdn.net/goodshot/article/details/79677758  tf.n...

2018-03-22 14:36:47

阅读数 269

评论数 0

tensorflow中random_normal的使用,案例说明,一看便知

先说明函数:tf.random_normaltf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)Outputs random values from a normal distri...

2018-03-22 14:33:17

阅读数 891

评论数 1

DFF(深度前馈网络)学习参考

这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。(一)神经网络入门之线性回归Logistic分类函数(二)神经网络入门之Logistic回归(分类问题)(三)神经网络入门之隐藏层设计...

2018-03-21 16:38:56

阅读数 141

评论数 0

DFF之--(一)神经网络入门之线性回归

这篇教程是翻译Peter Roelants写的神经网络教程,作者已经授权翻译,这是原文。该教程将介绍如何入门神经网络,一共包含五部分。你可以在以下链接找到完整内容。(一)神经网络入门之线性回归Logistic分类函数(二)神经网络入门之Logistic回归(分类问题)(三)神经网络入门之隐藏层设计...

2018-03-21 16:32:58

阅读数 567

评论数 0

解释一下全连接层&CNN中全连接层是什么样的

(名称:全连接。意思就是输出层的神经元和输入层的每个神经元都连接)在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,这是怎么来的呢?目的何在呢?举个例子:最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,进行了最后一次池化,输出了20个1...

2018-03-20 22:59:37

阅读数 14085

评论数 2

CNN中全连接层是什么样的

名称:全连接。意思就是输出层的神经元和输入层的每个神经元都连接。例子: AlexNet  网络中第一个全连接层是这样的:layer {   name: "fc6"   type: "InnerProduct"   bottom...

2018-03-20 22:45:34

阅读数 588

评论数 0

线性映射和线性变换的区别

线性映射(linear map),是从一个向量空间V到另一个向量空间W的映射且保持加法运算和数量乘法运算。线性映射总是把线性子空间变为线性子空间,但是维数可能降低。而线性变换(linear transformation)是线性空间V到其自身的线性映射    线性空间V到自身的映射通常称为V上的一个...

2018-03-13 15:45:47

阅读数 3943

评论数 0

数学-矩阵计算(4)两种布局

之前会发现在有的求导上最后结果需要转置,而有的不需要,很困惑,然后才发现了这个维基上面的解释(这才是写该博文的主要价值,注意到不同的布局问题,其他部分只是为了完整性而写的),而且下面也有很多很不错的参考链接,其中就有之前的矩阵计算(2)和矩阵计算(3)的链接。维基最后更新时间:17 April 2...

2018-03-13 15:45:41

阅读数 167

评论数 0

数学-矩阵计算(2)矩阵函数微积分前奏

 矩阵微积分会涉及到对矩阵函数操作的规则。例如,假设将一个m×n 的矩阵 X 映射到一个p×q 的矩阵 Y 中。而我们期望获得的导数表达式如下:对于所有的 i,j 和k,l 来说,这里主要的困难在于如何将对矩阵内的元素对应的求导,我们在矩阵计算(1)中最后有关矩阵对矩阵的求导,可是如果矩阵过大,那...

2018-03-13 11:23:59

阅读数 192

评论数 0

数学-矩阵计算(1)矩阵和向量的求导法则

    机器学习、模式识别等领域,都是需要借助数学的,所以对于数学的理解和运用是十分重要的,这里先转载网上暂时找到的矩阵求导的一小部分。成长路漫漫,多学一点,就能更加接近自己的梦想!矩阵分四个博文介绍,这里是第一个。下面的(一部分)来自某个pdf中,因为不知道出处,所以也就没法引用了。见谅!一、矩...

2018-03-13 11:22:40

阅读数 105

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭