终于明白协方差的意义了

协方差其意义:

度量各个维度偏离其均值的程度。协方差的值如果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),结果为负值就说明负相关的,如果为0,也是就是统计上说的“相互独立”。


如果正相关,这个计算公式,每个样本对(Xi, Yi), 每个求和项大部分都是正数,即两个同方向偏离各自均值,而不同时偏离的也有,但是少,这样当样本多时,总和结果为正。下面这个图就很直观。下面转载自:http://blog.csdn.net/wuhzossibility/article/details/8087863

在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况:


当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大  Y 也越大, X 越小  Y 也越小,这种情况,我们称为“正相关”。


当X, Y 的联合分布像上图那样时,我们可以看出,大致上有:X 越大Y 反而越小,X 越小 Y 反而越大,这种情况,我们称为“负相关”。

当X, Y  的联合分布像上图那样时,我们可以看出:既不是X  越大Y 也越大,也不是 X 越大 Y 反而越小,这种情况我们称为“ 不相关”。

怎样将这3种相关情况,用一个简单的数字表达出来呢?

在图中的区域(1)中,有 X>EX ,Y-EY>0 ,所以(X-EX)(Y-EY)>0;

在图中的区域(2)中,有 X<EX ,Y-EY>0 ,所以(X-EX)(Y-EY)<0;

在图中的区域(3)中,有 X<EX ,Y-EY<0 ,所以(X-EX)(Y-EY)>0;

在图中的区域(4)中,有 X>EX ,Y-EY<0 ,所以(X-EX)(Y-EY)<0

正相关时,它们的(联合)分布大部分在区域(1)和(3)中,小部分在区域(2)和(4)中,所以平均来说,有E(X-EX)(Y-EY)>0 。(可以从一维 x~N(μ,σ)的大部分的分布(-3σ-3σ)99.7%的区间取值来理解,当符合条件的X和Y区域都在这(1)(3)区间,X-EX和Y-EY的数值同大于0和小于0的居多,其乘积大于0(是一个三维立体型吧,会根据概率密度p(x)来决定该区域数值,),且其对应数值相乘(X-EX)(Y-EY)越大偏离越大)

 X Y负相关时,它们的分布大部分在区域(2)和(4)中,小部分在区域(1)和(3)中,所以平均来说,有(X-EX)(Y-EY)<0 

 X Y不相关时,它们在区域(1)和(3)中的分布,与在区域(2)和(4)中的分布几乎一样多,所以平均来说,有(X-EX)(Y-EY)=0 

所以,我们可以定义一个表示X, Y 相互关系的数字特征,也就是 协方差
cov(X, Y) = E(X-EX)(Y-EY)

 cov(X, Y)>0时,表明 XY 正相关

 cov(X, Y)<0时,表明XY负相关

当 cov(X, Y)=0时,表明XY不相关

这就是协方差的意义。


另外补充:

1.

求特征协方差矩阵,如果数据是3维,那么协方差矩阵是

     clip_image003[4]

     这里只有x和y,求解得

     clip_image004[4]

     对角线上分别是x和y的方差,非对角线上是协方差。协方差大于0表示x和y若有一个增,另一个也增;小于0表示一个增,一个减;协方差为0时,两者独立。协方差绝对值越大,两者对彼此的影响越大,反之越小。


2.参考:https://blog.csdn.net/goodshot/article/details/50961720
参考资源链接:[滤波与推估:协方差函数估计在信号处理中的应用](https://wenku.csdn.net/doc/45wh0gnw3c?utm_source=wenku_answer2doc_content) 在处理实际信号时,我们经常遇到的情况是只有一组观测数据,这时需要估计协方差函数以进行有效的信号处理。为了深入理解这一过程,建议参考《滤波与推估:协方差函数估计在信号处理中的应用》一文,其中详细讨论了协方差函数的估计方法以及其在信号处理中的实际应用。 首先,我们需要明白协方差函数的定义及其在信号处理中的重要性。协方差函数可以表征信号在不同时间点之间的相互依赖关系,对于平稳随机过程而言,其估计是滤波和推估的基础。 基于单次实现的观测数据估计协方差函数通常涉及以下步骤: 1. **数据准备**:收集并整理观测数据,确保数据的准确性和完整性。 2. **样本协方差计算**:根据观测数据,计算出不同时间延迟下的样本协方差值。 3. **拟合函数选择**:根据样本协方差的特性,选择合适的协方差模型,如常数、线性、指数、高斯或多项式模型。 4. **最小二乘拟合**:应用最小二乘方法,将选定的协方差模型拟合到样本协方差值上。这一步骤通常涉及到构建一个目标函数,该函数是模型参数的函数,并且求解使得目标函数最小化的参数值。 5. **模型验证**:通过交叉验证或其他统计方法检验所选模型的拟合优度,确保模型的有效性。 在估计了协方差函数之后,我们可以利用它来进行信号处理。例如,若要处理信号中的噪声或进行信号重建,可以利用滤波技术。滤波过程中,我们可以使用协方差函数来确定滤波器的参数,进而优化滤波效果。最小二乘拟合在滤波中也扮演着重要角色,因为它能够帮助我们确定滤波器的系数,使其在某种意义上“最佳”地处理信号。 在实际应用中,这些步骤可能会涉及到复杂的数学计算和编程实现。为了简化这一过程,可以使用如MATLAB或Python等科学计算软件包,其中内置了大量处理信号和数据拟合的工具。 最后,考虑到《滤波与推估:协方差函数估计在信号处理中的应用》一文提供了丰富的理论背景和实例分析,建议在掌握理论基础后,通过这些实例来深化理解,并将理论应用于实践中。 参考资源链接:[滤波与推估:协方差函数估计在信号处理中的应用](https://wenku.csdn.net/doc/45wh0gnw3c?utm_source=wenku_answer2doc_content)
评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值