数据结构和算法——二叉树

二叉树是使用较多的一种树形结构,如比较经典的二叉排序树,Huffman编码等,都使用到了二叉树的结构,同时,在机器学习算法中,基于树的学习算法中也大量使用到二叉树的结构,因此,我们有必要对二叉树的结构有比较详细的了解和掌握。

一、二叉树的基本概念

1、二叉树的概念

二叉树(Binary Tree)是包含 n 个节点的有限集合,该集合或者为空集(此时,二叉树称为空树),或者由一个根节点和两棵互不相交的、分别称为根节点的左子树和右子树的二叉树组成。

一棵典型的二叉树如下图所示:

这里写图片描述

由上述的定义可以看出,二叉树中的节点至多包含两棵子树,分别称为左子树和右子树,而左子树和右子树又分别至多包含两棵子树。由上述的定义,二叉树的定义是一种递归的定义。

2、一些常见的二叉树

  • 满二叉树

对于一棵二叉树,如果每一个非叶子节点都存在左右子树,并且二叉树中所有的叶子节点都在同一层中,这样的二叉树称为满二叉树。

一棵满二叉树如下图所示:

这里写图片描述

  • 完全二叉树

对于一棵具有n个节点的二叉树按照层次编号,同时,左右子树按照先左后右编号,如果编号为 i 的节点与同样深度的满二叉树中编号为i的节点在二叉树中的位置完全相同,则这棵二叉树称为完全二叉树。

一棵完全二叉树如下图所示:

这里写图片描述

3、二叉树的一些性质

对于二叉树,包含一些性质:

  • 在二叉树中,第 i 层上至多有2i1个节点( i1
  • 深度为 k 的二叉树至多有2k1个节点( k1
  • 对一棵二叉树,如果叶子节点的个数为 n0 ,度为 2 的节点个数为n2,则 n0=n2+1
  • 具有 n 个节点的完全二叉树的深度为log2n+1

二、二叉树的基本操作

1、二叉树的存储结构

若要想对二叉树进行操作,首先需要定义二叉树的存储结构,对于如下图所示的二叉树:

这里写图片描述

其对应的存储有两种:

  • 顺序存储结构
  • 链式存储结构

首先,我们来看顺序存储结构,简单来讲,顺序存储结构是指用一维数据存储二叉树中的节点,其中,数组的下标要能体现节点之间的逻辑关系,对于上述的二叉树,其顺序存储结构为:

这里写图片描述

在顺序存储结构中,“^”表示的是没有节点,从顺序存储可以看出,若出现大量“^”,则对空间是一种极大的浪费。

在二叉树中,每一个节点至多存在左右子树,因此在链式存储结构中,每一个节点的结构为:

这里写图片描述

其中,data 称为数据域,lchild和rchild称为指针域,分别指向左孩子和右孩子。

在实际使用中,根据不同的需要,使用顺序存储结构和链式存储结构。对于链式存储结构,我们定义如下:

typedef struct BiNode{
        int data;// 数据域的值
        struct BiNode *left;// 左孩子
        struct BiNode *right;// 右孩子
}binode;

2、二叉树的遍历

在二叉树的操作中,二叉树的遍历是基本的操作,对于二叉树的遍历操作,主要分为:

  • 前序遍历
  • 中序遍历
  • 后序遍历
  • 层次遍历

对于前序遍历,首先遍历根节点,其次遍历左孩子,再遍历右孩子,按照如此的顺序遍历整棵树,其代码如下:

// 先序遍历
void pre_order(binode *p){
        if (p != NULL){
                printf("%d\t", p->data);
                pre_order(p->left);
                pre_order(p->right);
        }
}

对于中序遍历,首先遍历左子树,其次遍历父节点,最后遍历右子树,按照如此的顺序遍历整棵树,其代码如下:

// 中序遍历
void in_order(binode *p){
        if (p != NULL){
                in_order(p->left);
                printf("%d\t", p->data);
                in_order(p->right);
        }
}

对于后序遍历,首先遍历左子树,其次遍历右子树,最后遍历父节点,其代码如下:

// 后序遍历
void post_order(binode *p){
        if (p!= NULL){
                post_order(p->left);
                post_order(p->right);
                printf("%d\t", p->data);
        }
}

对于层次遍历,需要使用链表存储每一层的节点,同时,遍历完一个节点,将其左右子节点增加近链表中,其代码为:

// 层次遍历
void lever_order(binode *p){
        // 使用队列
        list<binode *> t;
        if (p != NULL){
                t.push_back(p);
        }

        while (t.size() > 0){
                printf("%d\t", (t.front())->data);
                if ((t.front())->left != NULL){
                        t.push_back((t.front())->left);
                }

                if ((t.front())->right != NULL){
                        t.push_back((t.front())->right);
                }
                t.pop_front();
        }
}

最终的遍历结果为:

这里写图片描述

参考文献

  • 《大话数据结构》
  • 《数据结构》(C语言版)
  • 10
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
1. 什么是二叉树二叉树是一种树形结构,其中每个节点最多有两个子节点。一个节点的左子节点比该节点小,右子节点比该节点大。二叉树通常用于搜索和排序。 2. 二叉树的遍历方法有哪些? 二叉树的遍历方法包括前序遍历、中序遍历和后序遍历。前序遍历是从根节点开始遍历,先访问根节点,再访问左子树,最后访问右子树。中序遍历是从根节点开始遍历,先访问左子树,再访问根节点,最后访问右子树。后序遍历是从根节点开始遍历,先访问左子树,再访问右子树,最后访问根节点。 3. 二叉树的查找方法有哪些? 二叉树的查找方法包括递归查找和非递归查找。递归查找是从根节点开始查找,如果当前节点的值等于要查找的值,则返回当前节点。如果要查找的值比当前节点小,则继续在左子树中查找;如果要查找的值比当前节点大,则继续在右子树中查找。非递归查找可以使用栈或队列实现,从根节点开始,每次将当前节点的左右子节点入栈/队列,直到找到要查找的值或者栈/队列为空。 4. 二叉树的插入与删除操作如何实现? 二叉树的插入操作是将要插入的节点与当前节点的值进行比较,如果小于当前节点的值,则继续在左子树中插入;如果大于当前节点的值,则继续在右子树中插入。当找到一个空节点时,就将要插入的节点作为该空节点的子节点。删除操作需要分为三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点。删除叶子节点很简单,只需要将其父节点的对应子节点置为空即可。删除只有一个子节点的节点,需要将其子节点替换为该节点的位置。删除有两个子节点的节点,则可以找到该节点的后继节点(即右子树中最小的节点),将其替换为该节点,然后删除后继节点。 5. 什么是平衡二叉树? 平衡二叉树是一种特殊的二叉树,它保证左右子树的高度差不超过1。这种平衡可以确保二叉树的查找、插入和删除操作的时间复杂度都是O(logn)。常见的平衡二叉树包括红黑树和AVL树。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值