keras瞎搞系列-early stopping

本文探讨了在Keras中使用Early Stopping来防止过拟合的方法,通过在训练过程中监控验证集损失来提前终止训练。
摘要由CSDN通过智能技术生成

keras瞎搞系列-early stopping

在训练中,有些时候需要在停止的位置进行停止。但是 Earyly stopping可以实现这些功能,这些时候模型泛化能力比较强。与L2正则化相似,选择参数w范数比较小的神经网络。
有些时候可以采用early stopping。

early Stopping

优点:只运行一次梯度下降,就可以找出 W的比较小的值,中间值和比较大的值。无需尝试L2正则化超级参数lambda的很多值。
缺点:不能独立地处理以上两个问题,使得考虑得东西比较复杂。

一般机器学习的步骤分为以上两个步骤:第一步我们要确定成本函数J,然后可以用梯度下降方法进行优化,第二步不希望模型发生过拟合,就有正则化方式去操作,这是一个动态的过程。但是如果采用 early stopping,相当于用一种方式控制两个问题的结束,使得问题变得比较复杂。在中间位置的时候,模型已经停止训练了,成本函数没有下降到适合的区域。

import keras.callbacks
keras.callbacks.EarlyStopping(monitor='val_loss',patience=0,verbose=0,mode&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值