keras瞎搞系列-early stopping
在训练中,有些时候需要在停止的位置进行停止。但是
Earyly stopping可以实现这些功能,这些时候模型泛化能力比较强。与L2正则化相似,选择参数w范数比较小的神经网络。
有些时候可以采用early stopping。
early Stopping
early Stopping
优点:只运行一次梯度下降,就可以找出
W的比较小的值,中间值和比较大的值。无需尝试L2正则化超级参数lambda的很多值。
缺点:不能独立地处理以上两个问题,使得考虑得东西比较复杂。
一般机器学习的步骤分为以上两个步骤:第一步我们要确定成本函数J,然后可以用梯度下降方法进行优化,第二步不希望模型发生过拟合,就有正则化方式去操作,这是一个动态的过程。但是如果采用 early stopping,相当于用一种方式控制两个问题的结束,使得问题变得比较复杂。在中间位置的时候,模型已经停止训练了,成本函数没有下降到适合的区域。
缺点:不能独立地处理以上两个问题,使得考虑得东西比较复杂。
一般机器学习的步骤分为以上两个步骤:第一步我们要确定成本函数J,然后可以用梯度下降方法进行优化,第二步不希望模型发生过拟合,就有正则化方式去操作,这是一个动态的过程。但是如果采用 early stopping,相当于用一种方式控制两个问题的结束,使得问题变得比较复杂。在中间位置的时候,模型已经停止训练了,成本函数没有下降到适合的区域。
import keras.callbacks
keras.callbacks.EarlyStopping(monitor='val_loss',patience=0,verbose=0,mode&