高分7(GF7)卫星数据制作DEM

本文介绍了如何利用RSD软件,结合GF7卫星数据制作数字高程模型(DEM)。详细阐述了从选择数据集、设置参数、采集关联点到创建DEM的全过程,并探讨了DEM的精度问题和编辑方法,特别提到了城市区域DEM的处理差异。通过实例展示了处理结果和编辑后的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RSD平台新增利用GF7卫星前视PAN数据(FWDPAN)和后视PAN数据(BWDPAN)制作数字高程模型/数字表面模型(DEN/DSM)。实际上多光谱后视数据(BWDMUX)的参与能进一步提高前后视配准精度从而提高DEM/DSM产品质量,但目前RSD仅有前后视全色波段的DEM制作部分。

支持GF7卫星DEM制作的RSD软件需要2021年7月以后发布的版本。

一、选择数据集

准备好GF7 -L1A原始数据集,启动RSD。点击图1的菜单。有两个菜单项可以开始DEM制作。先选择第一个(红框内)DEM生成-核线约束NCC匹配。(第二个仅用于城市建筑的视差匹配)。

图1 使用GF7 生成DEM的菜单项

点击后出现对话框图2。点击文件名编辑框后面的小按钮选择文件,选择前视和后视文件。

图2 选择GF7 前视和后视文件

二、设置参数

点击确定,出现图3的对话框,设置里面的参数。

 

图3 核线约束的NCC匹配代价视差检测参数设置对话框

图3中左侧是两个选中的数据集的信息,通常从数据集的属性文件自动提取,如果没有提取到(有的数据可行信息不全,没有卫星角度信息等),也给出了一个初始值,用户也可以自己输入角度数据。

图3中右侧红框是数据处理范围,用户可以自行输入适当范围。这是来源数据左上角坐标位置和待处理的数据行数和列数。数据坐标位

### 使用 ENVI 对高分七号卫星遥感数据进行预处理 对于高分七号卫星遥感数据的预处理,在使用 ENVI 软件时可以遵循一系列特定的操作流程来确保数据的有效性和准确性。这些操作不仅适用于科研项目,同样也适合于实际工程项目中的应用。 #### 数据导入 首先需要将获取到的高分七号原始数据文件导入至 ENVI 中。这通常涉及到解压缩下载的数据包,并通过 `File -> Open` 或者直接拖拽的方式加载影像文件进入软件环境[^1]。 #### 辐射定标 为了使图像能够反映真实的物理量值,需执行辐射定标的步骤。此过程可利用 ENVI 内置的功能完成,具体可通过 Toolbox 找到对应的模块来进行设置和校准参数调整[^2]。 #### 几何纠正 几何纠正是指消除由于传感器姿态变化等因素引起的变形误差的过程。针对不同类型的卫星数据,可以选择合适的地理坐标系以及投影方式实施精确配准。对于高分辨率光学成像仪所采集的数据而言,推荐采用地面控制点法提高精度。 #### 图像裁剪与掩膜生成 当研究区域已知的情况下,可以通过绘制感兴趣区 (ROI) 来限定分析范围并创建相应的掩膜层。这一环节有助于去除无关背景干扰项,从而聚焦目标对象特征提取。用户可以在 Toolbox 中找到 “Subset Data From ROIs”,随后指定要保留的目标区域及其外部填充值(如 NaN 表示无效数值)。此外,还可以考虑引入矢量边界文件 (.shp),以便更精准地定义工作区间[^3]。 ```python # Python脚本用于自动化上述部分流程(伪代码示意) import envi def preprocess_gf7_data(input_file, roi_shapefile=None): # 加载GF-7数据集 dataset = envi.open(input_file) # 进行辐射定标... # 应用几何矫正... if roi_shapefile is not None: # 导入.shp文件作为ROI mask_layer = create_mask_from_shp(roi_shapefile) # 将mask应用于原图 masked_image = apply_roi_mask(dataset, mask_layer) return processed_dataset ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值