「YOLO 之父」Joseph Redmon 宣布退出计算机视觉领域了!这个刚刚出现的消息着实让人工智能界感到惊讶。
在社交网络上,这位 YOLO知名 AI 算法的发明者昨天突然声明:出于道德上的考虑,他决定停止一切有关计算机视觉的研究。
在 AI 领域,这还是第一次。
说到 YOLO,相信每个计算机视觉从业者都不陌生。它是一种非常常用的目标检测算法,任务是找出图像中我们感兴趣的目标,确定其大小和位置并识别出具体是哪个对象。从自动驾驶到人脸识别,很多日常生活中的常见任务都离不开这种算法。
YOLO 模型最早是由 Joseph Redmon 等人在 2015 年提出的,并在随后的几篇论文中进行了修订。
Faster R-CNN 及在其基础上改进的 Mask R-CNN 在实例分割、目标检测、人体关键点检测等任务上都取得了很好的效果,但通常较慢。而 YOLO 的创新之处在于,它提出了 one-stage,即目标定位和目标识别在一个步骤中完成,是名副其实的「You Only Look Once」。
由于 YOLO 只使用单个网络,因此可以直接在检测性能上进行端到端优化,使得基础 YOLO 模型能以每秒 45 帧的速度实时处理图像。YOLO 的一个小规模版本——Fast YOLO 可以达到每秒 155 帧的处理速度。