- 博客(49)
- 收藏
- 关注
原创 关于笔试编程题被坑的输入问题,acm模式下的python输入究竟如何写?
常见的笔试编程题,都是ACM模式写完功能函数以后,在调用函数之前,涉及到一个输入问题那acm模式下的输入应该如何写呢?
2023-10-10 13:51:18 360
原创 上手vue2的学习笔记5之在vue2项目中调用elment-ui
上手vue2的学习笔记4之搭建vue环境vue2.0项目引入element-ui。
2023-07-17 18:51:08 502
原创 上手vue2的学习笔记4之搭建vue环境
安装完成之后,项目中会多一个node_modules文件夹,这里面就是所需要的依赖包资源。项目启动后,在浏览器中输入项目启动后的地址:http://localhost:8080。2、创建一个基于 webpack 模板的新项目。可以在cd的项目路径中查看刚刚创建的项目。
2023-07-17 17:34:39 424
原创 上手vue2的学习笔记3之vue和ui框架的关系
前端框架是为了简化应用程序和用户界面的开发而存在的,它们通过为 Web 开发人员提供可重用的代码模块、标准化的前端技术和现成的界面块来简化他们的工作。常用的前端框架有Bootstrap框架、React框架、Vue框架、Angular框架、Foundation框架等等。这些框架可以帮助开发人员快速开发web应用,减少时间和成本。九大热门前端框架UI框架可以理解为模板,所以UI框架也就是UI模板。比如我们在使用组件的时候,如果能把具有共性的东西抽离出来,变成通用的组件。
2023-06-30 18:03:57 813 1
原创 上手vue2的学习笔记2之安装node.js和npm的踩坑经历
上一篇笔记简单介绍了学习vue框架之前应该具备的基础知识和四个我认为非常有用的学习链接,建议大家动手实践一下,更多深刻的理解前端三剑客之间的关系。这一篇笔记主要介绍我在安装vue过程中遇到的坑,以及如何避开坑的方法。一般情况下,纯小白会按照官网的描述进行环境搭建,但是个人认为vue的官网做得并不好,很容易踩坑。
2023-06-30 16:33:00 815
原创 上手vue2的学习笔记1之了解前端三剑客
纯小白学习前端开发,找学习资料也花费了一些时间,后续配置环境,也走了很多弯路,这里梳理一下这几天的学习资料,做一个简单的总结。
2023-06-30 14:55:56 482
原创 解决tar (child): gzip: Cannot exec: Too many levels of symbolic links
解决tar (child): gzip: Cannot exec: Too many levels of symbolic links
2022-11-23 21:27:02 766
原创 抛物检测(1)之sort算法
因为动态目标检测出来的是一个个的目标块,不知道上一帧与下一帧的目标对应关系,因此需要跟踪算法,将目标一一对应起来。我们唯一知道的就是在一帧里面的许多目标框,能不能只依据坐标来跟踪多个目标呢?答案是有,那就是SORT算法,其核心算法是匈牙利算法+卡尔曼滤波。...
2022-06-23 19:35:09 984
原创 数据库期末考试预习之候选码,最小函数依赖集,3NF分解算法,判断第几范式
数据库期末考试预习之候选码,最小函数依赖集,3NF分解算法,判断第几范式
2022-06-13 21:14:51 6764 2
原创 服务器环境搭建Yolov5的环境并简单测试
之前跑过yolov5,所以这次的环境搭建,还比较顺利。1.创建环境参考链接:搭建环境2.1 创建虚拟环境首先在本地环境下搭建一个环境,名字设为yolo5conda create -n yolov5 python=3.7#创建环境conda activate yolov5#切换yolov5环境创建包完成后,查看conda环境下是否有刚才创建的环境,通过以下的指令可以查看所有的环境。conda env list结果如下:还可以通过以下指令可以查看服务器的cuda版本。nvidia
2022-04-30 17:02:35 1301
原创 运动目标检测之背景建模(1):混合高斯建模GMM的理解
参考链接1:GMM运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法 ,通过求解偏微分方程,求的图像序列的光流场 ,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以可以采用背景模型法。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,混合高斯建模是最常用。找到研究方向以后,就是了解对应的
2022-04-27 17:12:18 4648
原创 运动目标检测之光流法(4)LK金字塔论文翻译
金字塔型实现的Lucas Kanade特征跟踪器的算法描述Jean-Yves BouguetIntel CorporationMicroprocessor Research Labsjean-yves.bouguet@intel.com1.问题说明设I和J是两幅二维灰度图像。两个量I(x) = I(x,y)和J(x) = J(x,y)则是两个图像的灰度值,即位置x = [x,y]T,其中x和y是普通图像点x的两个像素坐标。图像I有时被称为第一图像,而图像J被称为第二图像。对于实际问题,图像I和J
2022-04-20 21:59:48 1852
原创 运动目标检测之光流法(3):金字塔Lucas-Kanade算法c++实现
#前言起初是用的python跑了几个光流法和差分法的代码,后来换用c,vs code配置c/c++环境比较麻烦,就换用了vs studio。在vs studio中配置opencv环境:VS配置永久OpenCV(小萌轻松操作):超细致_矮矮的小胖子的博客-CSDN博客_vs配置opencv#LK金字塔算法的C语言代码参考链接:opencv3/C++光流点追踪_阿卡蒂奥的博客-CSDN博客但是这个原代码我跑着有点问题,修改了一部分,如下:#include<op
2022-04-18 16:38:36 4948
原创 (三)学习目标检测的第3个月
##第一周写图片裁剪代码了解darknet框架,安装GPU,搭建环境https://www.freesion.com/article/5248397669/https://blog.csdn.net/u011622208/article/details/105025271https://blog.csdn.net/chunleixiahe/article/details/55666792
2022-04-18 15:49:18 3519
原创 运动目标检测之光流法(2):金字塔Lucas-Kanade算法
参考链接1:Lucas-Kanade算法参考链接2:金字塔Lucas-Kanade算法1.Lucas–Kanade光流算法在计算机视觉中,Lucas–Kanade光流算法是一种两帧差分的光流估计算法。它由Bruce D. Lucas 和 Takeo Kanade提出。1.1 假设条件(1)亮度恒定,就是同一点随着时间的变化,其亮度不会发生改变。这是基本光流法的假定(所有光流法变种都必须满足),用于得到光流法基本方程;(2)小运动,这个也必须满足,就是时间的变化不会引起位置的剧烈变化,这样灰度才能
2022-04-18 15:45:32 3685
原创 运动目标检测之光流法(1):入门级了解
摸鱼了一个星期以后,我开始正经了解光流法。一、运动目标检测的综述参考链接🔗:运动目标检测综述1.光流法光流是空间运动物体被观测面上的像素点运动产生的瞬时速度场,包含了物体表面结构和动态行为的重要信息。光流计算法大致可分为三类:(1)基于匹配的光流计算方法,包括基于特征和基于区域的两种。基于特征的方法是不断地对目标主要特征进行定位和跟踪,对大目标的运动和亮度变化具有鲁棒性,存在的问题是光流通常很稀疏,而且特征提取和精确匹配也十分困难;基于区域的方法先对类似的区域进行定位,然后通过相似区域的位移计算光
2022-04-11 20:56:19 3167
原创 自学QT:Qt 里的几个重点基础模块
参考:https://zhuanlan.zhihu.com/p/393112717Qt Core 模块提供了 Qt 里最核心的、且非 GUI相关的功能,包括但不限于:1、 最核心的功能,包括元对象系统 ( QObject )、属性系统 ( Q_PROPERTY() ),对象模型 ( QMetaXXX )、信号槽机制 (用于对象间通讯)等;2、线程 ( QThread、QRunnable 等 )和并发 ( QMutex、QSemaphore 等 );3、输入/输出 ( QIODevice 等 )、资
2022-03-11 11:12:27 419
原创 YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5的发展(1)
YOLO深度卷积神经网络已经经过原作者Joseph Redmon经过了3代4个经典版本(含YOLOv2和YOLO9000),后因为自己的研究成果被用于军事而道德不安,故放弃更新。俄罗斯的AlexeyAB接下接力棒,完成了第4版迭代YOLOV4,并获得了Joseph官方认可。现在,美国公司Ultralytics提出了YOLOV5,并保持持续更新。需要注意的是,yolov1-v4都是有论文的,而v5并没有论文,只有开源的代码,而且一直保持更新状态。发展历程2016.5.9 yolov120
2021-12-17 11:33:12 2383
原创 小样本数据增广学习笔记
本文主要介绍四中数据增广的方法:mixup,mosaic,cutmix,cutoutCutout论文地址:https://arxiv.org/abs/1708.04552开源代码github地址:https://github.com/uoguelph-mlrg/CutoutCutout 是直接对输入的图像进行遮挡。作者在论文中也进行了说明,这样做法有以下两点优势:(1) 通过 Cutout 可以模拟真实场景中主体被部分遮挡时的分类场景;(2) 可以促进模型充分利用图像中更多的内容来进行分类,防
2021-07-06 18:27:07 5818 3
原创 (二)学习目标检测的第2个月
##第一周月结看完cs231n的笔记算法,框架,芯片的区别:https://www.zhihu.com/question/392366957yolo算法,更改权重
2021-06-16 09:46:17 136
原创 数据集(3):从0了解INRIA数据集
该数据集分为两种格式:(a)具有对应注释文件的原始图像(b)原始的负样本图像和标准化64*128像素的正样本图像(用于CVPR论文中的)根目录下虽然有六个文件夹,但是实际上四个。’train_64*128_H96’中的pos文件就是96*160H96;’test_64*128_H96’中的pos文件就是70*134H96;原始图像‘Train’文件夹和’Test’文件夹分别对应于原始训练图像和测试图像。(a)’pos’(正样本的训练和测试图像(图像分辨率不定))..
2021-06-11 09:52:34 1313
原创 数据集(2):从0了解coco数据集
起初用visdrone的数据集当作yolo模型训练的数据集,可是一直出现问题,所有用coco数据集试一下#下载COCO数据集MSCOCO数据集的官网为:http://mscoco.org/如果想只下载COCO2017/COCO2014的话,可以不需要翻墙下载,复制以下链接打开迅雷等下载软件下载即可,网速还可以。COCO2017 训练数据:http://images.cocodataset.org/zips/train2017.ziphttp://images.cocodataset.o.
2021-05-12 11:22:17 318
原创 纯小白通过服务器搭建yolov5环境训练coco数据集
#服务器和电脑的差别https://zhuanlan.zhihu.com/p/162938209https://zhuanlan.zhihu.com/p/166335427从用途来看;服务器是主机通过安装各种程序,长期稳定接受互联网访问,提供各式各样服务的工具,长期、稳定、开放是它显著的特点。 从安装系统来看;服务器有着专门的系统,比如Windows系统有Windows2003/2008/2012/2016/2019各种版本,Linux系统也有Ubuntu、centos、redhat等版本,还
2021-05-07 17:44:07 3820
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人