YOLO深度卷积神经网络已经经过原作者Joseph Redmon经过了3代4个经典版本(含YOLOv2和YOLO9000),后因为自己的研究成果被用于军事而道德不安,故放弃更新。
俄罗斯的AlexeyAB接下接力棒,完成了第4版迭代YOLOV4,并获得了Joseph官方认可。
现在,美国公司Ultralytics提出了YOLOV5,并保持持续更新。
需要注意的是,yolov1-v4都是有论文的,而v5并没有论文,只有开源的代码,而且一直保持更新状态。
发展历程
2016.5.9 yolov1
2016.12.25 yolov2
2018.4.8 yolov3
2020.4.23 yolov4
2020.6.10 yolov5
YOLOV1
yolov1作为yolo系列的开山之作,提出的创新思想主要是,不再提前选定候选区,直接在输出层回归目标框的位置和类别。
网络模型
前面的卷基层提取特征,后面的全连接层用于计算输出概率和坐标。
输入图像都需要统一到448×448个像素的RGB三通道的图像上,利用填充拉伸的方法。
第一层:使用分辨率为7×7×64卷积核(步长为2),将448×448×3的图像先变为224×224×64图像;再使用分辨率为2×2(步长为2)的最大池化层,将图像变为112×112×64的图像。
第二层: