抛物线插值法

  抛物线插值法(parabolic interpolation method)亦称二次插值法,是一种多项式插值法,逐次以拟合的二次曲线的极小点,逼近原寻求函数极小点的一种方法。具体做法是:设f(t)在t1<t2<t3处的函数值依次为f(t1),f(t2)和f(t3),用抛物线φ(t)=a0+a1t+a2t²拟合f(t),使满足φ(ti)=a0+a1ti+a2ti²(i=1,2,3)组成的方程组,对φ(t)求导并令其等于零,解得t=-a1/2a2,由上述方程组得到a1和a2,将其代入解式便有计算近似极小点的公式,每次的三点组中,中间点t2的函数值均不大于搜索区间[t1,t3]的两端点的函数值,逐次迭代,逐步缩小搜索区间.当相继两次迭代的极小点之间的距离小于某一预先给定的距离时,或者当逼近函数的值和原寻求函数的值之差小于某一允许误差时,即可终止迭代 [1]  。

基本介绍

多项式是逼近函数的一种常用的工具,在寻求函数极小点的区间上,可以利用在若干点处的目标函数值来构造一个多项式,作为目标函数的近似表达式,并用这个多项式的极小点作为原目标函数极小点的近似,重复应用这一方法进行迭代计算,直到得出满意的结果为止,这种方法称为插值法。常用的插值法有线性插值(切线法)、三次插值法、二次插值法,前两种方法均要进行导数计算,下面介绍比较简单常用的二次插值法又称抛物线插值法 [2]  

方法步骤

 

设目标函数  是连续的,  三点满足

构造抛物线

使

只要  不为同一值,则  就是一确定的抛物线,其中系数  可由条件(2)定出,若记

  

,则式(2)变成

设抛物线  的极小点为  ,则  应满足  ,即

因此

利用克莱姆法则解方程组(3)并代入上式可得

由于  三点函数值满足“两头高,中间低”,故由此决守的抛物线,其极小点

  自然落在区间  之内,这在几何上是明显的。

一般说来,仅通过一次工作,用抛物线  代替  求极小点,误差可能较大。我们把

  作为搜索区间  的一个内点,通过比较  与  的大小,必可在  

中去掉  或  ,使余下的三点构成一个新的搜索区间,且满足函数值“两头高,中间低”的要求,再以这三个点为出发点,重复上述步骤,又可得到一个新的极小点的近似值。如此反复进行,直到求得的极小点  与已知三个点的中间一点  满足

  ,即可终止迭代,  为预先给定的正数。

还应注意的是,在每一次迭代中比较  以确定下一次搜索区间时,抛物线极小点  可能落在  之左,也可能落在

  之右。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值