抛物线插值法(parabolic interpolation method)亦称二次插值法,是一种多项式插值法,逐次以拟合的二次曲线的极小点,逼近原寻求函数极小点的一种方法。具体做法是:设f(t)在t1<t2<t3处的函数值依次为f(t1),f(t2)和f(t3),用抛物线φ(t)=a0+a1t+a2t²拟合f(t),使满足φ(ti)=a0+a1ti+a2ti²(i=1,2,3)组成的方程组,对φ(t)求导并令其等于零,解得t=-a1/2a2,由上述方程组得到a1和a2,将其代入解式便有计算近似极小点的公式,每次的三点组中,中间点t2的函数值均不大于搜索区间[t1,t3]的两端点的函数值,逐次迭代,逐步缩小搜索区间.当相继两次迭代的极小点之间的距离小于某一预先给定的距离时,或者当逼近函数的值和原寻求函数的值之差小于某一允许误差时,即可终止迭代 [1] 。
基本介绍
多项式是逼近函数的一种常用的工具,在寻求函数极小点的区间上,可以利用在若干点处的目标函数值来构造一个多项式,作为目标函数的近似表达式,并用这个多项式的极小点作为原目标函数极小点的近似,重复应用这一方法进行迭代计算,直到得出满意的结果为止,这种方法称为插值法。常用的插值法有线性插值(切线法)、三次插值法、二次插值法,前两种方法均要进行导数计算,下面介绍比较简单常用的二次插值法又称抛物线插值法 [2] 。
方法步骤
设目标函数 是连续的, 三点满足
构造抛物线
使
只要 不为同一值,则 就是一确定的抛物线,其中系数 可由条件(2)定出,若记
,则式(2)变成
设抛物线 的极小点为 ,则 应满足 ,即
因此
利用克莱姆法则解方程组(3)并代入上式可得
由于 三点函数值满足“两头高,中间低”,故由此决守的抛物线,其极小点
自然落在区间 之内,这在几何上是明显的。
一般说来,仅通过一次工作,用抛物线 代替 求极小点,误差可能较大。我们把
作为搜索区间 的一个内点,通过比较 与 的大小,必可在
中去掉 或 ,使余下的三点构成一个新的搜索区间,且满足函数值“两头高,中间低”的要求,再以这三个点为出发点,重复上述步骤,又可得到一个新的极小点的近似值。如此反复进行,直到求得的极小点 与已知三个点的中间一点 满足
,即可终止迭代, 为预先给定的正数。
还应注意的是,在每一次迭代中比较 以确定下一次搜索区间时,抛物线极小点 可能落在 之左,也可能落在
之右。