【数学原理】抛物线插值

文章链接:JiauZhang-CSDN博客

机器感知

一个专注于SLAM、机器视觉、Linux 等相关技术文章分享的公众号
 

设插值抛物线方程为

                                      h(t)=at^{_{2}}+bt+c

其中a、b、c为抛物线的系数t为自变量,现有三个已知函数值:

                                      h(i-1)h(i)h(i+1)

且满足下式:

                                      h(i-1)<h(i)>h(i+1)

易知,三点可以确定一个抛物线,所以根据以上三点的函数值可以求解出抛物线方程各参数值。

现在将抛物线整体向右平移i个单位,既有:

                                     h(t)=a(t-i)^{_{2}}+b(t-i)+c

由此可得:

                                    \left\{\begin{matrix}h(i+1)=a+b+c \\ h(i)=c\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ h(i-1)=a-b+c \end{matrix}\right.

可解得:

                                    \left\{\begin{matrix}a=[h(i+1)+h(i-1)]/2-h(i)\\ b=[h(i+1)-h(i-1)]/2\; \; \; \; \; \; \; \; \; \; \; \! \\ c=h(i) \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \! \end{matrix}\right.

因此,抛物线极值坐标为:

                                     t_{max}=-\frac{b}{2a}=i-\frac{h(i+1)-h(i-1)}{2[h(i+1)+h(i-1)-2h(i)]}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值