71、康复机器人设计与运动规划及阻抗控制策略研究

康复机器人设计与运动规划及阻抗控制策略研究

1. 康复机器人设计与运动规划

康复机器人旨在帮助患者实现拟人化协调步态训练,以下将详细介绍其设计与运动规划相关内容。

1.1 正逆运动学模型与尺寸参数确定
  • 正逆运动学模型 :单侧 PAWU 采用单驱动双输出结构,通过运动学分析方法建立了 PAWU 的正逆运动学模型。正运动学可根据驱动轴的运动求解 LLWACR 的位置,逆运动学则是已知 LLWACR 的运动规律求解驱动轴的运动规律。
    • 正运动学中,有如下解:
      [
      \begin{cases}
      \dot{\theta_2} = \frac{2k + em\sqrt{(e^2 + k^2 - m^2)}}{(e^2 + k^2) \cdot t}\
      \dot{x_B} = -L_9 \cdot \dot{\theta_2} \cdot t\
      \dot{y_B} = -L_9 \cdot \dot{\theta_2} \cdot \frac{-mk + e\sqrt{(k^2 + e^2 - m^2)}}{e^2 + k^2}
      \end{cases}
      ]
      其中,(t = \sqrt{1 - (\frac{2km - e \times \sqrt{e^2 + k^2 - m^2}}{e^2 + k^2})^2})。
    • 逆运动学中,根据已知的 (\theta_2) 可推导出 PAWU 驱动轴的旋转角度 (\theta_1) 为:
      (\theta_1 = \cos^{-1}\left(\frac{L_
内容概要:本文系统阐述了哈希算法在现代计算机系统中的性能优化策略实际应用,重点围绕哈希函数选择、哈希表结构设计、计算效率提升、分布式环境下的数据分布优化以及安全加密场景的平衡展开。详细介绍了MurmurHash、CityHash、FNV、CRC32等常用哈希函数的适用场景,分析了链地址法、开放地址法和Cuckoo Hashing等冲突解决机制的优缺点,并提出了批量计算、预计算缓存、硬件加速和轻量化算法等性能优化手段。同时,探讨了一致性哈希在分布式系统中的应用及其优化策略,兼顾了高性能高可用性需求。; 适合人群:具备一定计算机基础知识和编程经验,从事后端开发、系统架构、大数据处理或网络安全相关工作的1-3年工作经验的技术人员;也适合对底层数据结构算法优化感兴趣的学习者。; 使用场景及目标:①数据库索引、缓存系统中哈希表的设计调优;②高并发场景下哈希计算性能瓶颈的解决方案;③分布式缓存负载均衡中一致性哈希的应用实践;④在安全性能之间权衡选择合适的加密哈希算法。; 阅读建议:此资源以理论结合实践的方式深入剖析哈希算法的核心优化路径,建议读者在理解原理的基础上,结合具体应用场景进行代码实现性能测试,重点关注不同哈希策略在真实系统中的表现差异,并尝试对比优化效果。
内容概要:本文介绍了一种基于带通滤波后倒谱预白化技术的轴承故障检测方法,特别适用于变速工况下故障特征提取困难的问题。该方法通过对振动信号进行带通滤波,抑制噪声干扰,再利用倒谱预白化消除调制效应,提升周期性冲击特征的可辨识度,最后通过平方包络谱分析有效识别轴承故障频率。文中提供了完整的Matlab代码实现,便于读者复现算法并应用于实际故障诊断场景。该技术对于早期微弱故障信号的检测具有较强敏感性,能够显著提高变速条件下轴承故障诊断的准确性。; 适合人群:具备一定信号处理基础,从事机械故障诊断、工业设备状态监测等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决变速工况下传统包络谱分析易受频率混叠和噪声干扰导致故障特征难以识别的问题;②实现对轴承早期故障微弱冲击信号的有效提取增强;③为旋转机【轴承故障检测】【借助倒谱预白化技术在变速条件下诊断轴承故障的应用】带通滤波后的倒谱预白化的平方包络谱用于轴承故障检测(Matlab代码实现)械的智能运维预测性维护提供技术支持。; 阅读建议:建议结合Matlab代码逐行理解算法流程,重点关注带通滤波器设计、倒谱预白化处理步骤及平方包络谱的生成过程,同时推荐使用公开数据集(如CWRU)进行验证对比实验,以深入掌握方法优势适用边界。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值