PyTorch实战(3)---- CNN模型的迁移学习

CNN模型的迁移学习

import numpy as np
import torch
import torch.nn as nn
import torchvision
from torchvision import datasets, transforms, models

import time
import os
import copy

# print("Torchvision Version: ", torchvision.__version__)

data_dir = './data/hymenoptera_data'
model_name = 'resnet'
num_classes = 2
batch_size = 32
num_epochs = 15
feature_extract = True
input_size = 224

# 读入数据
all_imgs = datasets.ImageFolder(os.path.join(data_dir, "train"), transforms.Compose([
    transforms.RandomResizedCrop(input_size),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
]))
loader = torch.utils.data.DataLoader(all_imgs, batch_size=batch_size, shuffle=True, num_workers=4)

# 用于训练的和用于测试的两种读入数据的处理方法
data_transforms = {
    "train": transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    "val": transforms.Compose([
        transforms.Resize(input_size),
        transforms.CenterCrop(input_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
}

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ["train", "val"]}

# 利用dataloader处理一下读入的数据,以便于后面训练模型
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], 
        batch_size=batch_size, shuffle=True, num_workers=4) for x in ["train", "val"]}

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


# 是否是用来做特征提取的,如是则无需微调参数
def set_parameter_requires_grad(model, feature_extract):
    if feature_extract:
        for param in model.parameters():
            param.requires_grad = False


# 初始化一个预训练好的resnet模型
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
    if model_name == "resnet":
        model_ft = models.resnet18(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)
        input_size = 224
    else:
        print("model not implemented")
        return None, None
    return model_ft, input_size


model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
# print(model_ft)


# 训练模型函数
def train_model(model, dataloaders, loss_fn, optimizer, num_epochs=5):
    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.
    val_acc_history = []
    for epoch in range(num_epochs):
        print("Epoch: ", epoch)
        # 将训练过程和测试过程分开处理
        for phase in ["train", "val"]:
            running_loss = 0.
            running_corrects = 0.
            if phase == "train":
                model.train()
            else:
                model.eval()
            for inputs, labels in dataloaders[phase]:
                inputs, labels = inputs.to(device), labels.to(device)
                with torch.autograd.set_grad_enabled(phase=="train"):
                    outputs = model(inputs)
                    loss = loss_fn(outputs, labels)
                preds = outputs.argmax(dim=1)
                if phase == "train":
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds.view(-1) == labels.view(-1)).item()
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects / len(dataloaders[phase].dataset)
            print("Phase {} loss: {}, acc: {}".format(phase, epoch_loss, epoch_acc))
			
            # 保存一下最优模型
            if phase == "val" and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
            if phase == "val":
                val_acc_history.append(epoch_acc)
    model.load_state_dict(best_model_wts)
    return model, val_acc_history


# 模型训练过程
model_ft = model_ft.to(device)
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model_ft.parameters()), lr=0.001, momentum=0.9)
loss_fn = nn.CrossEntropyLoss()
_, hist = train_model(model_ft, dataloaders_dict, loss_fn, optimizer, num_epochs=num_epochs)
PyTorch是一个流行的深度学习框架,常用于计算机视觉和自然语言处理任务。迁移学习(Transfer Learning)是利用预训练模型在一个大任务(比如ImageNet中的大量图像分类)上获得的知识,将其应用到一个小规模但相关的任务中的一种方法,例如精灵(如宝可梦)的分类。 在PyTorch中,你可以使用已经训练好的卷积神经网络(CNN),如ResNet、VGG或Inception等,作为基础模型来进行迁移学习。对于宝可梦精灵分类,首先你需要: 1. **准备数据集**:收集并整理包含宝可梦图片的数据集,确保它们被正确地标注为各个类别。 2. **加载预训练模型**:从 torchvision.models 中选择一个适合的模型,如resnet18、resnet50等,并设置其参数为不可训练(`.eval()`)以保持前几层不变。 3. **特征提取**:将模型应用于每个输入图像,仅取输出的特征向量(通常是`model.fc`之前的最后一层)而不是最终的分类结果。 4. **添加新层**:由于原始模型的最后一层可能不适合新的分类任务,通常会添加一层或多层全连接层(Linear Layer)以及适当的激活函数。 5. **微调**:如果希望进一步提升性能,可以选择部分或全部冻结的预训练层进行微调(`.train()`),调整这些层的权重以适应新任务。 6. **训练和评估**:使用训练集对模型进行训练,并用验证集监控性能,然后在测试集上评估模型的实际效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值