PyTorch深度学习实战(25)——从零开始实现Mask R-CNN实例分割
0. 前言
Mask R-CNN
(Mask Region Convolutional Neural Network
) 是基于深度学习的图像分割算法,它是在 Faster R-CNN
目标检测框架的基础上进行扩展和改进的。与传统目标检测方法相比,Mask R-CNN
不仅可以准确地检测图像中的对象,还可以为每个对象生成精确的像素级别的分割掩码。这意味着 Mask R-CNN
能够同时提供对象的边界框和具体的像素级别分割结果,从而更细粒度地理解图像中的结构和语义信息。在本节,将介绍 Mask R-CNN
架构的工作原理,并使用 PyTorch
实现 Mask R-CNN
进行实例分割。
1. Mask R-CNN
1.1 网络架构
Mask R-CNN
是一种用于目标检测和实例分割的深度学习算法,它扩展了 Faster R-CNN 算法,并增加了一个用于预测对象掩码 (mask
) 的分支。
Mask