BatchNorm和LayerNorm的区别;PCA详解;LogSoftmax相较于Softmax的优势

本文详细解析了BatchNorm与LayerNorm在不同维度上的应用区别,并深入介绍了PCA的原理及其优势。通过对比两种归一化技术,读者可以更好地理解它们在神经网络中的作用。同时,本文还提供了PCA的全面解释,帮助读者掌握这一重要的数据降维方法。
摘要由CSDN通过智能技术生成

1 BatchNorm和LayerNorm的区别:12

总结: 

假设输入为四个维度(batch_size, channel, height, width)

(1)BatchNorm应用在通道(特征)维——channel

(2)LayerNorm应用在样本维——batch_size

对其他三个维度进行归一化

2 PCA详解:PCA详解

LogSoftmax相较于Softmax的优势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值