谷歌新AI阿法星,C位出道爆锤人类职业游戏玩家!

DeepMind的人工智能AlphaStar在星际争霸II中击败了人类职业选手,展示了AI在复杂游戏环境中的决策能力。这一胜利标志着AI在游戏领域的又一里程碑。

由谷歌的DeepMind子公司开发的AI在星际争霸II中击败了人类专业人士 - 这是人工智能领域的第一个。在油管和Twitch上播出的一系列比赛中,AI玩家连续10场比赛击败了人类。在最后一场比赛中,职业球员Grzegorz“MaNa”Komincz能够为人类夺取一场胜利。

 

“人工智能的历史已经在不同游戏中取得了许多重要的基准胜利,”DeepMind的研究联合负责人David Silver在赛后表示。 “我希望 - 虽然显然有工作要做 - 未来的人们可能会回顾[今天],也许会认为这是人工智能系统可以做的又一步。”

在视频游戏中击败人类可能看起来像人工智能开发的副作用,但这是一项重大的研究挑战。像星际争霸II这样的游戏对于电脑来说比棋类或围棋这样的棋盘游戏更难。在视频游戏中,AI代理人无法观察每件作品的移动来计算他们的下一步行动,他们必须实时做出反应。

这些因素似乎并没有成为DeepMind人工智能系统的障碍,被称为AlphaStar。 首先,在击败MaNa之前,它击败了职业选手Dario“TLO”Wünsch。 这些游戏最初于去年12月在DeepMind的伦敦总部进行,但今天与MaNa的最后一场比赛直播,为人类提供了单一的胜利。

 

专业的星际评论员将AlphaStar的剧作描述为“现象”和“超人”。在星际争霸II中,玩家在建立基地,训练军队和入侵敌人领土之前从同一地图的不同侧面开始。 AlphaStar特别擅长所谓的“微观”,即微观管理的缩写,指的是在战场上快速果断地控制部队的能力。

这与我们从其他高级游戏AI看到的行为相呼应。当OpenAI的经纪人去年在Dota 2上扮演人类职业选手时,他们最终被击败了。但是专家们指出,AI再次以“清晰和精确”的方式发挥了“催眠作用”。毫无疑问,快速做出决策毫无疑问是机器的主场。

专家们已经开始剖析游戏并争论AlphaStar是否有任何不公平的优势。人工智能AI在某些方面受到了阻碍。例如,它限制每分钟执行的点击次数超过人类。但与人类玩家不同,它能够一次查看整个地图,而不是手动导航。

 

DeepMind的研究人员表示,这并没有提供任何真正的优势,因为AI在任何时候都只关注地图的一个部分。但是,正如游戏所示,这并没有阻止AlphaStar同时控制三个不同部分区域的单位 - 评论员认为这对人类来说是不可能的。值得注意的是,当MaNa在现场比赛中击败AlphaStar时,人工智能正在玩有限的摄像机视图。

另一个潜在的痛点包括这样一个事实:人类玩家虽然是专业人士,但并不是世界冠军标准。特别是TLO还必须参加星际争霸II的三场他不熟悉的比赛。

除此之外,专家们表示比赛是向前迈出的重要一步。长期参与星际AI场景的人工智能研究员戴夫丘吉尔告诉The Verge:“我认为代理人的实力是一项重大成就,至少比我最乐观的猜测还要早一年。在AI研究人员中听到。“

 

然而,丘吉尔补充说,由于DeepMind尚未发布任何有关该工作的研究论文,因此很难说它是否显示出任何技术上的飞跃。丘吉尔说:“我还没有阅读过这篇博客文章,或者没有任何论文或技术细节可以访问。”

乔治亚理工学院的人工智能教授Mark Riedl表示,他对结果并不感到惊讶,而且这次胜利只是“时间问题。”Riedl补充说,他认为这些比赛并没有表明星际争霸II已经存在。明确地被殴打。 “最后,现场比赛,限制AlphaStar到窗口确实消除了一些人为的优势,”里德尔说。 “但我们看到的更大问题是,[人工智能]学到的政策是脆弱的,当人类可以将AI推出其舒适区域时,人工智能就会崩溃。”

最终,像这样的工作的最终目标不是在视频游戏中击败人类,而是为了加强AI训练方法,特别是为了创建可以在星际争霸等复杂虚拟环境中运行的系统。为了训练AlphaStar,DeepMind的研究人员使用了一种称为强化学习的方法。 AI在尝试达到某些目标(如获胜或仅仅活着)时,通过反复试验来玩游戏。 他们首先通过复制人类玩家来学习,然后在类似体育馆的比赛中互相比赛。 最强大的特工生存下来,最弱的特工被抛弃。DeepMind估计其AlphaStar代理商以这种方式累计约200年的游戏时间,以更快的速度播放。

DeepMind明确了其开展这项工作的目标。 “首先,DeepMind的任务是建立一个人工的一般智能,”AlphaStar项目的联合负责人Oriol Vinyals说,他指的是建立一个可以执行人类任何心理任务的AI。 “要做到这一点,重要的是要对我们的代理人在各种任务中的表现进行基准测试。”

 

人工智越来越接近我们的生活,语音助手、人脸识别、虚拟聊天机器人,以及智能交通、无人车等,显示着人工智能的存在和强大。我们对人工智能期望的同时,也好奇人工智能会给我们带来什么?我们怎么应对呢?

人工智能已经和我们的生活密不可分了,我们更应该深刻习和了解人工智能,比如现在市场上的各种知识学习平台,知乎、引力先知、得到等等,都是很好的学习人工智能的途径。其中引力先知,相对于其他平台来说,内容更加垂直于人工智能AI,在当前的知识分享平台上来看,还是比较新颖的。

(体验小程序)

据悉,这是一家国内初创公司发布的人工智能专属的学习平台,主打AI知识分享解读,以及对畅销 AI 书籍、AI深度文章、论文的理解和解说。同时还涉及到AI行业前沿资讯,以及对企业来说很有启发的国内外AI创新案例。不同于知乎Live的实时语音互动问答,以及喜马拉雅的移动音频流,先知更倾向于精准垂直的AI人群。或者这正是我们要思考的:人工智能到底有多强大?我们应该明白这一点,因为人工智能有潜力变得比任何人都更聪明。

【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一数字。例如,可以使用一个动态分配的数组,每个元素表示一个上的数字,从低到高排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进、溢出等问题,以及如何优化代码以提高效率。例如,使用操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
内容概要:本文详细介绍了一个基于Java与Vue技术栈的向量数据库语义检索与相似文档查重系统的设计与实现。系统通过集成BERT等深度学习模型将文本转化为高维语义向量,利用Milvus等向量数据库实现高效存储与近似最近邻检索,结合前后端分离架构完成从文档上传、向量化处理、查重分析到结果可视化的完整流程。项目涵盖需求分析、系统架构设计、数据库建模、API接口规范、前后端代码实现及部署运维等多个方面,并提供了完整的代码示例和模块说明,支持多格式文档解析、智能分段、自适应查重阈值、高亮比对报告生成等功能,具备高扩展性、安全性和多场景适用能力。; 适合人群:具备一定Java和Vue开发基础的软件工程师、系统架构师以及从事自然语言处理、知识管理、内容安全等相关领域的技术人员,尤其适合高校、科研机构、企业IT部门中参与智能文档管理系统开发的专业人员。; 使用场景及目标:①应用于学术论文查重、企业知识产权保护、网络内容监控、政务档案管理等需要高精度语义比对的场景;②实现深层语义理解下的文档查重,解决传统关键词匹配无法识别语义改写的问题;③构建可扩展、高可用的智能语义检索平台,服务于多行业数字化转型需求。; 阅读建议:建议读者结合提供的完整代码结构与数据库设计进行实践操作,重点关注文本向量化、向量数据库集成、前后端协同逻辑及安全权限控制等核心模块。在学习过程中应逐步部署运行系统,调试关键接口,深入理解语义检索与查重机制的工作原理,并可根据实际业务需求进行功能扩展与模型优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值