自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

翻译 2.2.3 配对交易:基于协整的配对选择(2)

我认为我们迄今为止测试的所有配对选择方法的主要缺点是假设整个交易期间市场条件不会改变。我们分析了定价数据,并评估了哪些配对适合在周期开始时仅进行一次交易。然后,我们假设选定配对中的两只股票之间的关系将继续以之前相同的方式表现。我认为这种假设在现代金融市场中是不现实的,因为现代金融市场往往非常动态。在这篇文章中,我想测试如果我们将交易期限限制为一个月,我们的配对选择方法将如何表现。使用12个月的形成期来选择潜在的交易配对(使用与上一篇文章中相同的条件)。

2024-06-30 11:20:31 36

翻译 2.2.2 基于协整的配对选择(2)

在上一篇文章中,我们发现虽然协整方法为我们提供了更多潜在可交易的对,但我们选择最佳交易对的方法未如预期。大多数选择的对在交易期间偏离过多。在本文中,我希望测试几种机器学习技术,以结合多个指标并使用它们预测哪些股票在交易期间会表现“良好”。第一步是为机器学习算法准备数据。我将有两个数据集:一个用于训练和选择模型,另一个用于纯样本外测试。2013年1月1日–2016年6月30日用于训练数据(3年形成期 + 6个月交易期)

2024-06-29 17:26:27 44

翻译 3 配对交易:支持向量机(SVM)在配对交易中的应用

该策略利用支持向量机进行股票配对交易。经回测验证,在考虑交易成本前后,策略均表现优异,超越了简单的买入持有策略和市场表现。策略的日收益与市场和目标资产的日收益相关性较低,显示出较好的独立性。进一步改进包括添加更多数据流和调整模型参数。尽管不是典型的配对交易策略,但仍可获得稳定盈利。

2024-05-26 16:28:53 78

翻译 投资组合:利用随机矩阵理论估计协方差矩阵的投资组合优化

本文探讨了如何使用随机矩阵理论(RMT)来优化投资组合的协方差矩阵估计,从而提升投资组合的性能。首先使用生成数据验证了模型,确保均值和协方差矩阵的稳定性,然后将数据分为训练集和测试集以寻找最优投资组合并计算实际收益。文章详细说明了使用算术收益而非对数收益的原因,并描述了如何通过保留超出RMT界限的最大特征值信息来过滤相关矩阵。使用过滤后的协方差矩阵进行均值-方差优化,比起传统方法,在性能上有所提升,特别是在回测策略时速度更快。尽管测试结果与现有文献有所差异,这提示未来研究需要进一步探究并可能对模型进行改

2024-04-25 17:24:00 529 1

翻译 投资组合:使用加权均值和协方差估计器的投资组合优化

本文讨论了使用加权估计器改进投资组合优化策略的方法。介绍了一个基于等权重投资组合波动性的标准MPT策略,随后提出了一种新策略,即最大化夏普比率而不设定波动性上限,以接受更高风险换取更大回报。通过实施回测,比较了使用简单均值和协方差估计器的传统策略与使用加权估计器的策略性能,并发现加权估计器在两种交易策略中均能提高表现。此外,选择最佳衰减率可以进一步提升策略性能,但这超出了本文的范围。虽然使用加权估计器的表现有所提高,但还有进一步改进的空间,未来的文章将继续探索构建更高效的交易

2024-04-24 23:01:36 213

翻译 投资组合:投资组合优化和现代投资组合理论

本文介绍了现代投资组合理论(MPT)的基本概念,其中包括使用历史数据来优化投资组合,以在特定的风险水平下最大化预期回报。通过Python演示了如何生成随机投资组合,计算它们的预期回报和波动性,并探讨了最小方差投资组合和给定风险水平下回报最大化的策略。文章还涉及了允许和禁止做空的情况下的有效边界绘制,并通过回测验证了策略性能。尽管使用了简单的历史均值和协方差矩阵估算器,策略表现出色,但估算误差可能导致最优投资组合性能下降,并计划在后续文章中探索不同的估算器对投资组合性能的影响。

2024-04-22 22:20:45 486

翻译 2.1.2 配对交易:基于距离的配对选择(2)

本文讨论了通过改进基于距离的方法来选择配对交易中的股票对。本文尝试了多种筛选标准,包括协整测试、Hurst指数、均值回归半衰期及零交叉次数,以寻找交易期间偏离不大的股票对。尽管在263901对潜在配对中找到了1703对符合条件的股票对,但无论使用哪种筛选方法,大多数股票对在交易期间的表现都不理想,偏离历史均衡值过大。文章还尝试了增长形成期至36个月,虽有所改善,但大多数股票对仍然不适合交易。文章建议将这些方法与协整方法结合可能带来更好的结果。

2024-04-10 19:55:25 87 1

翻译 2.1.1 配对交易:基于距离的配对选择(1)

这篇文章探讨了使用距离方法进行配对选择在量化交易中的实际应用及其局限性。作者通过实验发现,尽管该方法在样本内有效地识别了均值回归的股票对,但在样本外,即实际交易期间,大多数选定的股票对表现出了行为发散,没有展现出预期的均值回归特性。这表明仅依赖距离方法进行股票对的选择可能不足以保证盈利交易。

2024-04-08 18:34:37 135

翻译 2.2.1 配对交易:基于协整的配对选择(1)

本次对话主要围绕了使用统计方法分析和选择股票配对交易的策略。讨论从解释基础概念如协整、赫斯特指数、均值回归半衰期、零交叉次数开始,进而探讨了构建等权重和非等权重投资组合的不同方法,以及如何通过调整投资组合中股票的权重来尝试消除随机漫步成分,从而创建一个更稳定的投资组合。还提到了使用长达36个月的形成期来增加潜在股票对的数量,并尝试通过选择零交叉次数最多的股票对和皮尔逊相关系数最高的股票对来改善选股质量的尝试。

2024-04-01 11:43:49 384

翻译 1 配对交易:概述

这个例子展示了配对交易的一般原理。当然,在现实生活中它要复杂得多。在接下来的文章中,我将描述几种配对选择的方法,并将它们应用于现实世界的数据。本人能力尚浅,分享的策略也是些基础入门级,单独使用这些策略进行实盘操作,多数时候可能会全自动亏损。有效的交易需要根据实际情况定制更为精准的策略。若在文章中发现问题、建议或更正,请不吝赐教,在评论区回复或私信我都可。

2024-03-16 11:40:05 157

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除