统计学习方法例题代码实践
亦万
世间行乐亦如此,古来万事东流水。
展开
-
统计学习方法第二章例题2.2代码实践,感知机的对偶形式的代码实现
针对统计学习方法第二章的第二个例题设计了代码如下:(注释部分为自己出错的部分调试代码,小白码代码略扎心)#-*- coding:utf-8 -*-import sysfrom numpy import *import osfrom compiler.ast import flattenreload(sys)sys.setdefaultencoding('utf-8')#原创 2018-01-10 22:58:20 · 1115 阅读 · 1 评论 -
统计学习方法第五章CART算法代码实践例题5.4
统计学习方法第五章CART算法代码实践例题5.4from numpy import *def loadDataSet(): # 本书例题的数据集 dataset = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好'原创 2018-01-18 23:18:04 · 1002 阅读 · 0 评论 -
用SMO算法解决统计学习方法SVM那一章例题7.1,7.2的代码实践
用SMO算法解决统计学习方法SVM那一章例题7.1,7.2的代码实践,比之前发布的SVM算法多了个计算权重的函数来通过拉格朗日因子来计算权#-*- encoding:utf-8 -*-from numpy import *#又调试了半天 写代码需谨慎class SVM(object): def __init__(self): self.dataMat=[]原创 2018-01-26 17:18:30 · 1921 阅读 · 3 评论 -
统计学习方法第11章条件随机场整合例11.1,11.2代码实践
统计学习方法第11章条件随机场整合例11.1,11.2代码实践from numpy import *'''这里定义T为转移矩阵列代表前一个y(ij)代表由状态i转到状态j的概率,Tx矩阵x对应于时间序列这里将书上的转移特征转换为如下以时间轴为区别的三个多维列表,维度为输出的维度'''T1=array([[0.6,1],[1,0]]);T2=array([[0,1],[1,0.原创 2018-02-01 16:24:14 · 577 阅读 · 0 评论 -
统计学习方法第五章决策树的ID3算法代码实践 例5.3
统计学习方法第五章决策树的ID3算法代码实践 例5.3(下面还有一个封装起来的类)1.from numpy import *import mathdef loadDataSet(): # 本书例题的数据集 dataset = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'],原创 2018-01-18 11:33:07 · 498 阅读 · 0 评论 -
统计学习方法第五章决策树C4.5算法代码实践
统计学习方法第五章决策树C4.5算法代码实践(其实相对于ID3算法只是寻找最优划分属性的标准发生了改变,ID3为信息增益而C4.5为信息增益率即在ID3的信息增益除以数据集关于该特征划分的熵)from numpy import *import mathdef loadDataSet(): # 本书例题的数据集 dataset = [['青年', '否', '否', '一般', '原创 2018-01-18 19:15:00 · 1005 阅读 · 0 评论 -
统计学习方法第二章例题2.1代码实践
本程序是将统计学习第二章的例题2.1用代码运算出来#-*- coding:utf-8 -*-import osimport sysfrom numpy import *reload(sys)sys.setdefaultencoding('utf-8')#首先将书上的训练集输入def loadDataset(): dataset=[[3,3],[4,3],[1,1]]原创 2018-01-10 09:52:58 · 1203 阅读 · 0 评论 -
统计学习方法第七章的序列最小最优化算法SMO代码实践
统计学习方法第七章的序列最小最优化算法SMO代码实践#-*- encoding:utf-8 -*-from numpy import *#又调试了半天 写代码需谨慎,另外在内循环的函数中标记了代码所在书中公式的位置,可以参考一下class SVM(object): def __init__(self): self.dataMat=[]原创 2018-01-26 16:44:51 · 693 阅读 · 0 评论 -
统计学习方法第五章决策树的选择最优特征划分例5-1-5.2代码实践
统计学习方法第五章决策树的选择最优特征划分例5-1-5.2代码实践个人体会:本来代码都想在python2.7中编译运行的,个人比较懒就在网上复制了一份这个例题的数据集然后各种编码问题太扎心,目前换成python3.6感觉很舒服,建议大家还是用python3吧方便了很多from numpy import *import mathdef loadDataSet(): #本书例题的数据集原创 2018-01-18 10:53:39 · 578 阅读 · 0 评论 -
统计学习方法第11章条件随机场(CRF)的Viterbi算法例题11.3代码实践
统计学习方法第11章条件随机场(CRF)的Viterbi算法例题11.3代码实践:from numpy import *'''这里定义T为转移矩阵列代表前一个y(ij)代表由状态i转到状态j的概率,Tx矩阵x对应于时间序列这里将书上的转移特征转换为如下以时间轴为区别的三个多维列表,维度为输出的维度'''T1=array([[0.6,1],[1,0]]);T2=array([[0,原创 2018-02-01 17:40:05 · 995 阅读 · 0 评论 -
统计学习方法第11章条件随机场例11.1的代码实践
统计学习方法第11章条件随机场例11.1的代码实践:from numpy import *#这里定义T为转移矩阵列代表前一个y(ij)代表由状态i转到状态j的概率,Tx矩阵x对应于时间序列#这里将书上的转移特征转换为如下以时间轴为区别的三个多维列表,维度为输出的维度T1=[[0.6,1],[1,0]];T2=[[0,1],[1,0.2]]#将书上的状态特征同样转换成列表,第一个是原创 2018-02-01 16:07:34 · 1930 阅读 · 0 评论 -
统计学习方法第10章隐马尔可夫模型Viterbi算法例10.3代码实践
统计学习方法第10章隐马尔可夫模型Viterbi算法例10.3代码实践from numpy import *def calcNextFunc(alpha,feat,A,B,O,n): nextAlpha=mat(zeros((n,1))) Idict={} for i in range(n): midMatr=multiply(alpha,A[原创 2018-01-30 21:14:24 · 354 阅读 · 0 评论 -
统计学习方法第10章隐马尔可夫模型后向算法例题10.2代码实践
统计学习方法第10章隐马尔可夫模型后向算法例题10.2代码实践from numpy import *Q=[1,2,3]V=['红','白']A=mat([[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]])B=mat([[0.5,0.5],[0.4,0.6],[0.7,0.3]])Pi=mat([0.2,0.4,0.4])O=['红','白'原创 2018-01-30 19:30:41 · 1298 阅读 · 0 评论 -
统计学习方法第10章隐马尔可夫模型的概率计算方法的前向算法
统计学习方法第10章隐马尔可夫模型的概率计算方法的前向算法from numpy import *Q=[1,2,3]V=['红','白']A=mat([[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]])B=mat([[0.5,0.5],[0.4,0.6],[0.7,0.3]])Pi=mat([0.2,0.4,0.4])O=['红','白','原创 2018-01-30 18:56:29 · 352 阅读 · 0 评论 -
统计学习方法第四章极大似然估计的朴素贝叶斯分类方法例题4.1代码实践
统计学习方法第四章极大似然估计的朴素贝叶斯分类方法例题4.1代码实践(需要查看贝叶斯估计的可以查看我的另一篇文章http://blog.csdn.net/grinandbearit/article/details/79045143)代码如下:#-*- coding:utf-8 -*-from numpy import *#将书上的数据输入,这里懒得输入那么多个列表就用下array原创 2018-01-12 14:54:36 · 1691 阅读 · 1 评论 -
统计学习方法第四章朴素贝叶斯的贝叶斯估计,例题4.2代码实践
统计学习方法第四章朴素贝叶斯的贝叶斯估计,例题4.2代码实践(如需要查看极大似然估计的算法请看我的另一篇文章http://blog.csdn.net/grinandbearit/article/details/79044065),贝叶斯算法略微复杂了点对分子分母做了矫正防止出现乘0现象#-*- coding:utf-8 -*-from numpy import *#将书上的数据输入,原创 2018-01-12 16:02:20 · 2971 阅读 · 0 评论 -
统计学习方法第八章AdaBoost算法的例8.1代码实践
统计学习方法第八章AdaBoost算法的例8.1代码实践#-*- coding: utf-8 -*-from numpy import *def loadDataSet(): dataSet=[[0,1,2,3,4,5,6,7,8,9]] label=[1,1,1,-1,-1,-1,1,1,1,-1] return mat(dataSet).T,mat(la原创 2018-01-29 18:45:30 · 1596 阅读 · 0 评论