1.定义
定积分
∫
a
b
f
(
x
)
d
x
∫_{a}^{b}f(x)\,dx
∫abf(x)dx
表示函数 f(x) 在区间 [a,b] 上的累积效应或面积。定积分的定义可以通过以下步骤来理解:
(步骤内容不变,此处省略)
2.几何意义
定积分
∫
a
b
f
(
x
)
d
x
∫_{a}^{b}f(x) dx
∫abf(x) dx
的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:
- 如果 f(x)≥0,则定积分表示曲线下方的面积。
- 如果 f(x)≤0,则定积分表示曲线上方的面积的负值。
3.性质
定积分具有以下重要性质:
(性质内容不变,此处省略)
4.微积分基本公式
牛顿-莱布尼茨公式
∫
a
b
f
(
x
)
d
x
=
F
(
b
)
−
F
(
a
)
∫_{a}^{b}f(x)\,dx=F(b)−F(a)
∫abf(x)dx=F(b)−F(a)
其中,F(x) 是 f(x) 的一个原函数,即 F’(x)=f(x)。
例子
- 求
∫ 0 1 x 2 d x \int _{0}^{1}x^{2}\,dx ∫01x2dx
解:
∫ 0 1 x 2 d x = [ 1 3 x 3 ] 0 1 = 1 3 − 0 = 1 3 \int _{0}^{1}x^{2}\,dx=\left[\frac{1}{3}x^{3}\right]_{0}^{1}=\frac{1}{3}-0=\frac{1}{3} ∫01x2dx=[31x3]01=31−0=31 - 求
∫ − 2 − 1 1 x d x \int _{-2}^{-1}\frac{1}{x}\,dx ∫−2−1x1dx
解:
∫ − 2 − 1 1 x d x = [ ln ∣ x ∣ ] − 2 − 1 = ln 1 − ln 2 = − ln 2 \int _{-2}^{-1}\frac{1}{x}\,dx=\left[\ln{|x|}\right]_{-2}^{-1}=\ln{1}-\ln{2}=-\ln{2} ∫−2−1x1dx=[ln∣x∣]−2−1=ln1−ln2=−ln2
5.定积分换元法
例子
求
∫
0
4
x
+
2
2
x
+
1
d
x
\int _{0}^{4}\frac{x+2}{\sqrt{2x+1}}\,dx
∫042x+1x+2dx
解:
- 变量替换:
令
t = 2 x + 1 t=\sqrt{2x+1} t=2x+1
则
x = t 2 − 1 2 x=\frac{t^{2}-1}{2} x=2t2−1 - 对 x 求导数:
d x = d d t ( t 2 − 1 2 ) d t = t d t dx=\frac{d}{dt}\left(\frac{t^{2}-1}{2}\right)dt=tdt dx=dtd(2t2−1)dt=tdt - 确定新的积分上下限:
下限:
t 1 = 2 × 0 + 1 = 1 t_{1}=\sqrt{2\times 0 + 1}=1 t1=2×0+1=1
上限:
t 2 = 2 × 4 + 1 = 3 t_{2}=\sqrt{2\times 4 + 1}=3 t2=2×4+1=3 - 求解新的定积分:
∫ 1 3 t 2 − 1 2 + 2 t t d t = ∫ 1 3 ( t 2 + 3 2 ) d t = [ 1 2 ( 1 3 t 3 + 3 t ) ] 1 3 = 22 3 \int _{1}^{3}\frac{\frac{t^{2}-1}{2}+2}{t}t\,dt=\int _{1}^{3}\left(\frac{t^{2}+3}{2}\right)dt=\left[\frac{1}{2}\left(\frac{1}{3}t^{3}+3t\right)\right]_{1}^{3}=\frac{22}{3} ∫13t2t2−1+2tdt=∫13(2t2+3)dt=[21(31t3+3t)]13=322
步骤
- 选择合适的变量替换:
选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数:
x = g − 1 ( t ) = h ( t ) x=g^{-1}(t)=h(t) x=g−1(t)=h(t)
- 求导数:
对 x 的导数
d x = h ′ ( t ) d t dx=h'(t)dt dx=h′(t)dt
- 替换积分变量:
将原积分中的 x 替换为 t,并将 dx 替换为
h ′ ( t ) d t h'(t)dt h′(t)dt
-
确定新的积分上下限:
将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。 -
求解新积分:
求解新的定积分
∫ t 1 t 2 f ( h ( t ) ) h ′ ( t ) d t ∫_{t_{1}}^{t_{2}}f(h(t)) h'(t)dt ∫t1t2f(h(t)) h′(t)dt
例子
求
∫
0
4
x
+
2
2
x
+
1
d
x
\int _{0}^{4}\dfrac{x+2}{\sqrt{2x+1}}dx
∫042x+1x+2dx
解:
1.变量替换:
令
t
=
2
x
+
1
t=\sqrt{2x+1}
t=2x+1
则
x
=
t
2
−
1
2
x=\dfrac{t^{2}-1}{2}
x=2t2−1
2.对x求导数:
d
x
=
t
d
t
dx=tdt
dx=tdt
3.确定t的上下限:
下限:
t
1
=
0
+
1
=
1
t_{1}=\sqrt{0+1}=1
t1=0+1=1
上限:
t
2
=
2
×
4
+
1
=
3
t_{2}=\sqrt{2\times 4 + 1}=3
t2=2×4+1=3
4.求解新的定积分:
∫
1
3
t
2
−
1
2
+
2
t
t
d
t
=
∫
1
3
t
2
+
3
2
d
t
=
1
2
(
1
3
t
3
+
3
t
)
∣
1
3
=
22
3
\int _{1}^{3}\dfrac{\dfrac{t^{2}-1}{2}+2}{t}tdt=\int _{1}^{3}\dfrac{t^{2}+3}{2}dt=\dfrac{1}{2}(\dfrac{1}{3}t^{3}+3t)|_{1}^{3}=\dfrac{22}{3}
∫13t2t2−1+2tdt=∫132t2+3dt=21(31t3+3t)∣13=322